
Rational Architecture
Reasoning about Enterprise Dynamics

Supervisor:

Prof. Dr. L. van der Torre (University of Luxembourg)

The author was employed at the University of Luxembourg and received support from
the National Research Fund Luxembourg (reference PHD/09/082) in the project “Ratio-
nal Architecture”.

The front page illustration is licensed under CC-BY-SA 3.0 by the author of this thesis.
It is made by Frank van de Ven.

PhD-FSTC-2017-28
The Faculty of Sciences, Technology and Communication

DISSERTATION

Presented on 06/04/2017 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Marc van Zee
Born on 28 October 1985 in Vlissingen (The Netherlands)

RATIONAL ARCHITECTURE
REASONING ABOUT ENTERPRISE DYNAMICS

Dissertation defense committee
Prof. Pierre Kelsen, chairman
Université du Luxembourg, Luxembourg

Prof. Wiebe van der Hoek, vice-chairman
University of Liverpool, United Kingdom

Prof. Leendert van der Torre, supervisor
Université du Luxembourg, Luxembourg

Prof. Farhad Arbab
CWI Amsterdam, the Netherlands

Dr. Andreas Herzig
IRIT, Université Paul Sabatier, France (CNRS)

Prof. Erik Proper, expert
Luxembourg Institute of Science and Technology, Luxembourg

Dr. Dragan Doder, expert
University of Belgrade, Serbia

To my parents.

Summary

Following the banking crisis in the late 2000s, the Commission Wijffels [Wij13] con-
ducts a major study on how the stability of banks in the Netherlands can be improved.
The motivation for this study is that “banks have been insufficiently compliant and stable
in the last years.” One of their main recommendations is for every bank to use enterprise
architecture as a central component. Enterprise architecture is used to model large enter-
prises in a holistic fashion by connecting their IT infrastructure and applications to the
business processes they support. In turn this links them also to the products and services
that are realized by those business processes. Where software architecture is analogous
to the architecture of a building, enterprise architecture is comparable to the planning of
a city. It involves long-term plans, a large amount of (changing) stakeholders, vague and
high-level goals, and many types of uncertainty.

The ultimate goal of this thesis is a decision support system for enterprise architects.
Although decision support systems have found their way in many fields such as infor-
mation architecture, software architecture, and business informatics, they have not done
so much for enterprise architecture. This is partly due to the relative young age of the
profession, and partly due to the complexity of the domain. In this thesis we take a
first step in this direction by building a bridge between enterprise architecture and arti-
ficial intelligence. Since the field of enterprise architecture is large, our specific focus
is on how artificial intelligence can play a role in formalizing reasoning processes in
enterprise architecture. We build our bridge from enterprise architecture to artificial in-
telligence in three parts. We start from the practice of enterprise architecture, but as we
progress through the thesis, the contributions will become increasingly more technical
and the result more general.

The first part of this thesis consists of clarifying important characteristics of enterprise
architecture. We do so through a mixed qualitative/quantitative empirical study among
a group of enterprise architects. This results in a list of eight characteristics, which
we then use as yardsticks for remaining parts of the thesis. We analyze an existing
approach for enterprise architecture decision rationalization and recognize that many of
our characteristics are not supported.

In the second part, we focus on reasoning in the early requirement phase of the de-
velopment of an enterprise architecture. In the early requirements phase, an enterprise
architect collaborates with a group of stakeholders to refine the high-level goals and
values of the enterprise into more specific goals and tasks. Although there are various
languages and tools in existence to support these activities, there is limited support for
reasoning about the relation between the resulting models and underlying arguments
that were put forward in the discussions. To support this, we develop the RationalGRL
framework, which uses techniques from formal argumentation to formally trace back
goals and tasks of an information system to underlying arguments.

iii

iv

In the third part, we focus on reasoning about enterprise architecture planning. We
store plans and assumptions in a database, and develop a reasoning formalism for the
dynamics of this database. The database plays the role of an intelligent calendar, per-
forming consistency checks when new assumptions or plans are added. We formal-
ize the database using a belief-desire-intention logic, a common approach to formalize
resource-bounded planning. In order to characterize the dynamic of the database, we
develop postulates for rational revision, and we prove representation theorems linking
these postulates to a pre-order over semantic models.

Acknowledgments

Ever since I first learned how to beat my brother at the game Snake by changing a few
lines of QBasic code, I have been fascinated by computers. But I somehow couldn’t see
myself working on programming, hardware or network protocols for my entire life. This
is why I decided to do a bachelor study Industrial Design, focusing on intelligent product
design. During that study, I became more and more interested in artificial intelligence,
independently of products. After reading the book “Gödel, Escher, Bach” by Douglas
Hofstadter with my friend Jesse, I made the decision to start a master study Artificial
Intelligence at Utrecht University. There I was introduced to subjects such as logics of
agency (John-Jules Meyer), defeasible logics and argumentation (Henry Prakken), and
the computational beauty of nature (Gerard Vreeswijk). Each of these subjects inspired
me greatly and laid the basis for most of the things you find in this thesis, so I am forever
thankful for the passion and dedication of these teachers.

I consider myself extremely lucky to have been able to do my Ph.D. at the University
of Luxembourg at the research group Individual and Collective Reasoning. I have met
great researchers, some of whom I now consider to be good friends. Some deserve
special mentioning. Agustin, my first office mate and probably the most helpful and
genuine person I have ever met, thanks for always being there for me. Silvano, a decent
researcher but a terrible chess player, I enjoyed working on social network analysis with
you. Pouyan, Aida, Tjitze, Mikolai, Giovanni, Marcos, Livio, Xavier, Cristiana, Ana,
Alessia, Robert, Alessandra, and Dov, it was a pleasure getting to know you all, whether
it was by doing research together or having a few beers at Liquid.

Thanks to modern technology, royal funding, and a very open-minded supervisor I was
able to interact with a very large number of people from diverse disciplines outside
Luxembourg. I thank Thomas Icard for working on intention reconsideration during
my visits at Stanford, it made me realize working together with a philosopher can be
extremely inspiring. I also thank Yoav Shoham for his ideas and discussions during my
visit and for laying the conceptual foundations for the last part of my thesis.

Before I started my Ph.D., I had no knowledge of enterprise architecture, and I am grate-
ful to Erik Proper for helping me in this respect by organizing seminars, and bringing
me in contact with practitioners. I also thank enterprise architects Martin van den Berg
of de Nederlandsche Bank, as well as Saco Bekius and Michiel Borgers of de Belasting-
dienst for meeting me on various occasions and giving me important insights into the
practice of the field. Finally I thank Diana, Dirk, and Georgios for their opinions and for
swimming with me at the Coque now and then, as well as writing great papers with me.

Sepideh Ghanavati introduced me to the field of requirements engineering, which plays
an important part in my thesis as well. Thanks for always taking time to talk to me. I
also thank Floris Bex for spending a lot of time contributing to our papers.

v

vi

I have also been lucky enough to do an internship at Google Pittsburgh in Pennsylvania.
Special thanks there goes to Mitch, who always had time to answer my many questions.
A big thanks to the Moka team as well, and to my co-interns Sam, Jacen, Marko, and
Angela. It was a lot of fun hanging out with you, and your help in the coding interviews
was invaluable.

I should thank three persons in my research group who played the biggest part in shaping
this thesis. Emil, thanks for being my daily supervisor. Our many discussions and notes
have laid the foundations for many of my ideas in this thesis. But more importantly, you
were my ultimate opponent when it comes to defending my own opinions. I frequently
left our meetings dazed and confused, but overall it has made a stronger person. Dragan,
you are probably the best mathematician I ever met. Truth be told, I haven’t met a lot
of them, but I still learned a huge amount of things from you. Thanks for taking a lot
of time going through the proofs of this thesis with me. And finally Leon, my “official”
supervisor. I am forever grateful for the freedom you have given me and the time you
spent shaping my ideas. In the coming years I will try, most certainly without success,
to attain your gift for combining broad intuition with mastery of technical details.

Besides all these collaborations in research, I couldn’t have written this thesis without
support from my friends and family. I thank my friends from the football team Ell (“Mir
sinn den Eller!”) for making me feel very welcome in Luxembourg. I have had a lot
of fun with you. Special thanks for Thierry, I’ll miss our nights in your car listening to
David Bowie and Lou Reed. Frank, we’ve experiences so many things together, that I
cannot imagine our friendship ever to end. Thanks for being such a good friend for such
a long time, and thanks for making the figures of the “bridges” in Chapter 1. Jesse and
Joost, we may live apart, but our design trio will always live on. Ontwerp tot nut van
het algemeen en bijzondere! Christ, I know we are far apart, but you always feel close
at heart. Siem, Toon, Luuk, and Timon, our indescribable adventures will stay with me
forever.

Finally, I thank my parents, Hans and Wilma, for their continuous love and support, and
for raising me in peace and serenity. I know my life isn’t exactly as serene as yours,
but I thank you for believing in me and for always being there for me. I also thank my
brother Jeroen, who has been one of my best friends ever since we’ve been growing up.
I don’t think anybody has such a good taste of music as we do. Lastly, Claire, thank you
for having the patience to understand my many irrational impulses, for believing in me,
and for always being there for me. Home is wherever I’m with you.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Part 1: Characteristics of Enterprise Architecture 5

1.2.1 Background . 5

1.2.2 Methodology . 6

1.2.3 Research questions . 8

1.3 Part 2: Goals . 9

1.3.1 Background . 9

1.3.2 Methodology . 11

1.3.3 Research questions . 11

1.4 Part 3: Planning and Scheduling . 12

1.4.1 Background . 12

1.4.2 Methodology . 14

1.4.3 Research question . 14

1.5 Thesis outline and publications . 16

I Characteristics of Enterprise Architecture 19

2 Enterprise Architects High-Level Decision Making: an Empirical Study 21

2.1 Introduction . 21

2.2 Methodology . 23

2.2.1 Participants . 23

2.2.2 Procedure . 23

2.2.3 Analysis method . 25

2.3 Results . 25

2.4 Analysis . 25

2.4.1 Main activities . 26

2.4.2 Modeling languages and techniques 28

vii

viii

2.4.3 Qualitative/quantitative data 29

2.4.4 Differences with other architecture fields 29

2.4.5 Difficult aspects of design decisions 31

2.5 Characteristics of enterprise architecting 32

2.5.1 List of characteristics . 32

2.5.2 Rationality . 33

2.5.3 Bounded Rationality . 34

2.6 Discussion . 35

2.6.1 Related work . 35

2.6.2 Open issues . 36

2.6.3 Conclusion . 37

3 A Logical Framework for EA Anamnesis 39

3.1 Introduction . 39

3.2 Illustrative case: ArchiSurance . 40

3.2.1 ArchiMate . 41

3.2.2 ArchiSurance . 41

3.3 EA Anamnesis . 43

3.3.1 Metamodel and decision design graphs 43

3.3.2 Limitations of the metamodel 46

3.4 A formal model for EA decision modeling 47

3.4.1 Elementary definitions for EA decision modeling 47

3.4.2 Layered decision model and logical relations 49

3.5 Validation with ArchiSurance . 52

3.6 Discussion . 54

3.6.1 Related work . 54

3.6.2 Open issues . 55

3.6.3 Conclusion . 56

II Goals 57

4 RationalGRL: A Framework for Argumentation and Goal Modeling 59

4.1 Introduction . 59

4.2 Background: Goal-oriented Requirements Language and argument schemes 60

4.2.1 Running example: Traffic Simulator 60

4.2.2 Goal-oriented Requirements Language (GRL) 61

ix

4.2.3 Argument Scheme for Practical Reasoning (PRAS) 63

4.3 Argument Schemes for Goal Modeling 66

4.3.1 Details experiment . 68

4.3.2 Analysis . 71

4.4 Examples . 72

Example 1: Disable task Traffic light 72

Example 2: Clarify task Road pattern 73

Example 3: Decompose goal Simulate 75

Example 4: Reinstate actor Development team 75

4.5 RationalGRL: the logical framework 76

4.5.1 Logical Language for RationalGRL 77

4.5.2 Formal argumentation semantics 78

4.5.3 Algorithms for argument schemes and critical questions 80

4.5.4 Constructing GRL models . 87

4.6 Discussion . 88

4.6.1 Related work . 88

4.6.2 Open issues . 89

4.6.3 Conclusion . 93

III Planning and Scheduling 95

5 A Logic for Beliefs about Actions and Time 97

5.1 Introduction . 97

5.1.1 Commitment to time . 98

5.1.2 Methodology . 99

5.1.3 Strong and weak beliefs . 101

5.1.4 Results and overview . 101

5.2 PAL syntax . 102

5.3 PAL semantics . 103

5.4 PAL axiomatization . 106

5.5 Soundness and completeness . 109

5.6 Discussion . 109

5.6.1 Related work . 110

5.6.2 Open issues . 111

5.6.3 Conclusion . 111

x

6 The Dynamics of Beliefs and Intentions 113
6.1 Introduction . 113

6.2 Adding intentions . 114

6.2.1 Separating strong and weak beliefs 114

6.2.2 The coherence condition on beliefs and intentions 116

6.3 Revision of beliefs and intentions . 119

6.3.1 AGM belief revision . 119

6.3.2 Revision postulates . 120

6.3.3 Representation theorem . 124

6.4 Iterated revision . 127

6.5 Discussion . 128

6.5.1 Related work . 128

6.5.2 Open issues . 131

6.5.3 Conclusion . 135

7 Conclusion 137

A UCI Design Workshop Prompt 139

B Transcripts Excerpts 143

C GRL Specification 145

D Proofs 147
D.1 Completeness proofs . 147

D.2 Coherence Condition Proofs . 152

D.3 Representation theorems proofs . 154

E Tileworld Experiments 163

Bibliography 167

Publications 181

Curriculum Vitae 185

1

Introduction

A characteristic of design that is special to it, besides this gradual emergence of goals,
is that the largest task is to generate alternatives. There are lots of theories of decision
making, a field that has been heavily cultivated by economists and statisticians. But most
theories of decision making start out with a given set of alternatives and then ask how to
choose among them. In design, by contrast, most of the time and effort is spent in generat-
ing the alternatives, which aren’t given at the outset. [. . .] The idea that we start out with
all the alternatives and then choose among them is wholly unrealistic.

Herbert A. Simon, What we know about learning [Sim98]

In this thesis we study reasoning of enterprise architects. We investigate important char-
acteristics of enterprise architect reasoning and we develop languages and techniques
from logic and artificial intelligence in order to formalize them. This thesis contributes
to state of the art research in both enterprise architecture and artificial intelligence, and
consists of three parts. In the first part, we investigate the characteristics of enterprise
architect reasoning, and in the second and third part we develop increasingly advanced
logics and languages to formalize some of these characteristics.

In this chapter, we provide a general introduction to enterprise architecture, and we
outline the three main parts of this thesis. For each part we provide a methodology,
research questions, and a summary of the main results. We also provide a personal
motivation, and a reading guide for this thesis.

1.1 Motivation

The idea that increasingly smarter machines can perform manual work is already well-
known. In a widely cited study published in 2013 [FO17], Carl Benedikt Frey and
Michael Osborne examine 702 jobs in the United States and find that 47% of all workers
have jobs at high risk of potential automation. They conclude that recent developments
in artificial intelligence will put a significant part of employment at risk in the near fu-
ture, across a wide range of occupations. Such predictions are becoming a reality fast
as the insurance firm Fukoku Mutual Life in Japan will lay off more than 30 employ-
ees and replace them with IBM’s Watson Explorer AI, which can calculate payouts to
policyholders. The insurance firm calculated it will increase productivity by 30% and
save about 140m yen ($1.2m) a year after the 200m yen ($1.7m) AI system is installed
January 2017. Maintaining it will cost about 15m yen ($130k) a year.1

1See https://www.theguardian.com/technology/2017/jan/05/japanese-company-replaces-office-
workers-artificial-intelligence-ai-fukoku-mutual-life-insurance

1

2 Chapter 1 Introduction

According to experts, vulnerability to automation is determined mostly by whether the
work concerned is routine, and not so much whether it is manual or white-collar [Eco17].
Machines can already do many forms of routine manual labor, and are now able to per-
form increasingly complex routine cognitive tasks too. Self-driving cars, Jeopardy!
champion supercomputers2, world champion Go computers3, and a range of useful
robots have all appeared just in the past few years. And these innovations are not lab
demos; they are demonstrating their skills in the messy real world. These developments
contribute to the feeling that we are at an inflection point where many technologies that
used to be found only in science fiction are becoming everyday reality.

Managerial jobs are not insusceptible to this trend either. Many of the routine activi-
ties performed by managers are assisted by computers, and our data-driven society is
playing an important role in this development. While initially exclusive to analytics
experts, tools for data analysis to support decisions are becoming rapidly accessible to
the masses. IBM Watson Analytics is just one example. Such systems are generally
called decision support systems or decision-making software. Decision support systems
serve the management, operations, and planning levels of an organisation (usually mid-
dle and higher management) and help people make decisions about problems that may
be rapidly changing and not easily specified in advance. Decision support systems can
be either fully computerized, human-powered or a combination of both.

The ultimate goal of this thesis is a decision support system for enterprise architects.
Although decision support systems have found their way in many fields such as infor-
mation architecture, software architecture, and business informatics, they have not done
so much for enterprise architecture. Before we explain why this is the case, we first
briefly explain enterprise architecture.

We use the following definition of an enterprise architecture:

“Those properties of an enterprise that are necessary and sufficient to meet
its essential requirements” [GP11]

A commonly used metaphor for an enterprise architect is a city planner. City planners
work on long-term visions, providing the roadmaps and regulations that a city uses to
manage its growth and provide services to citizens. Using this analogy, we can differ-
entiate the role of the system architect, who plans one or more buildings; software ar-
chitects, who are responsible for the HVAC (Heating, Ventilation and Air Conditioning)
within the building; network architects, who are responsible for the plumbing within the
building, and the water and sewer infrastructure between buildings or parts of a city. The
enterprise architect however, like a city planner, both frames the city-wide design and
other activities into the larger plan.

There are a large number of responsibilities and skills that can potentially be associated
with an enterprise architect. One way to frame these responsibilities and skills is to
distinguish two main roles of an enterprise architect (Figure 1.1)

1. The engineer. The architect (usually a group of architects) develops models of
business and IT. These models can be UML-like diagrams, specialized enterprise

2http://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-
supercomputer-was-born-and-what-it-wants-to-do-next/

3https://www.wired.com/2016/03/googles-ai-wins-fifth-final-game-go-genius-lee-sedol/

1.1 Motivation 3

Figure 1.1: Two roles of an enterprise architect, and our scope (red dashed line)

architecture diagrams, risk analysis tools, textual descriptions, or any other repre-
sentation that the architect feels comfortable with.

2. The facilitator. The architect (usually the lead architect) is intermediator between
IT and business. Often, the architect attends business meetings and serves as an
IT expert, consulted by managers on what specific IT solutions to use.

Remark 1. We use the terms management, managerial board, board, and stakeholders
interchangeably throughout this thesis to refer to the group of persons who an enterprise
architect advises. While the management and stakeholders may technically be different
persons, we do not make this distinction here, since it is not the main focus of our
research.

Enterprise architects often work on large projects with a long duration, and try to steer
the enterprise such that the long-term goals and visions of the enterprise are reached,
with an emphasize on the IT part of the enterprise. Let us illustrate this through a simple
example.

Example 1.1 (University of Luxembourg). The University of Luxembourg is in the pro-
cess of merging three separate campuses into a single campus on a new location. This
process takes several decades, and requires a complete re-design of the IT landscape.
The university would like to ensure that their long-term strategy and vision is aligned
with their overall IT strategy, so they hire a team of enterprise architects. The lead archi-
tect discusses and refines the strategic goals and vision of the university with the execu-
tive board. She then works together with the other architects to develop a long-term IT
strategy. This plan involves modeling the current business-IT landscape in ArchiMate,
a specialized enterprise architecture modeling language, performing risk analysis on
various alternatives, etc. The board, not having expertise nor time to understand the
technical details of this problem, are then presented a simplified version of these plans.
The members of the board have different – and changing– concerns, discuss these plans
with each other and with the architect, who then brings this input back to his team of
architects. This process may be repeated any number of times.

Although the example above is (purposely) simplified, it does give an idea of the large
number of varying tasks an enterprise architect should be able to carry out. The enter-
prise architect is responsible for ensuring the IT strategy and planning are aligned with
the company’s business goals, and must optimize information management through un-
derstanding evolving business needs (facilitator), but it also must ensure projects do not
duplicate functionality or diverge from each other, and work with solution architects to

4 Chapter 1 Introduction

provide a consensus based enterprise solution that is scalable and adaptable (engineer).
As a result, an enterprise architect should have a large number of skills, from technical
skills such as comprehensive knowledge of hardware, software, application, and sys-
tems engineering, to soft skills such as communication skills and the ability to explain
complex technical issues in a way that non-technical people understand it, to manage-
rial skills such as project and program management planning, time management and
prioritization.

Currently, there is little research on enterprise architecture decision support, and in par-
ticular, there is little support for documenting enterprise architecture decisions in a struc-
tured way. We provide an abstract overview of the evolution of decision support for
enterprise architecture in Figure 1.2. In the early days, that is, in the time before desktop
computers were available to the common man, the tasks of enterprise architects were
done on paper (left image, coaster). At the next stage of the evolution, the introduc-
tion of the desktop computer made available general tools such as Microsoft Powerpoint
(second image from the left, Powerpoint). As the field of enterprise architecture ma-
tured, specialized languages and tool support were developed for enterprise architects,
such as the ArchiMate language [IJLP12] (third image from the left, ArchiMate). In this
thesis, we aim to lie the foundations for the next step (right image, question mark).

Figure 1.2: Evolution of enterprise architecture decision support. From coasters (left), to Pow-
erpoint (second left), to ArchiMate (second right), to the future (right)

We aim to contribute to the development of enterprise architecture decision support by
focusing on reasoning about high-level decisions. This is a crucial aspect of enterprise
architecting, both for the engineer as well as the facilitator role. In the role of the
facilitator, management may have vague and imprecise goals and wishes, which have
to be translated into a concrete IT strategy by the architect. This requires management
and the architect to develop a high-level plans and to have a shared conceptualization of
the problem. Management generally has limited time to discuss with the architect, so
the architect should focus on the most important elements when explaining a solution,
and make it as simple as possible. This enables management to understand the solutions
well enough in order to make an informed decision. In the engineer role, the architects
make plans with each other as well as with other architects, such as software architects,
information architects, or system designers.

In this thesis we focus on the facilitator role (Figure 1.1, red dashed line). This means
we focus on reasoning processes of the enterprise architect (the facilitator) and manage-
ment. Our aim is to support these processes by developing logical frameworks that store
important commitments, or high-level decisions. Such decisions are based on under-
lying assumptions. Assumptions may pertain to the goals of stakeholders, strategic di-
rections of the enterprise, architecture principles, requirements, arguments put forward
in discussions, etc. In practice, enterprises are confronted with frequent changes and
challenges to these assumptions. Even more, the assumptions, and their relative priority,

1.2 Part 1: Characteristics of Enterprise Architecture 5

also depend on the specific stakeholders that are involved in creating the architecture of
the future enterprise, as well as the actual transformation.

The state of the art research in enterprise architecture is diverse with many different
definitions emphasizing different parts of the field. Therefore, the first part of this thesis
is concerned with understanding the field of enterprise architecture better by identifying
important characteristics of enterprise architecture. In part two and three we then focus
on a few of those characteristics in more detail, and we develop logics and languages
to formalize them. In the second part we focus on the process of refining high-level
goals and values into more specific goals and tasks, and linking these with underlying
discussions between the architect and management. In the third part we focus on storing
enterprise architecture plans consisting of commitments and underlying assumptions in
databases. By storing these elements, the databases serve as guiding instruments steering
discussions.

1.2 Part 1: Characteristics of Enterprise Architecture

1.2.1 Background

There are a large number of definitions of enterprise architecture in existence. The
definition we use here is by Greefhorst and Proper [GP11]: “those properties of an en-
terprise that are necessary and sufficient to meet its essential requirements”. Greefhorst
and Proper provide an overview of some of the key definitions of enterprises architec-
ture, while demonstrating that the above definition captures the essence of architecture.
They also argue that, in defining this concept, a distinction can be made between the
purpose, the meaning and the elements of an enterprise architecture:

Purpose The main purpose of an enterprise architecture is to align an enterprise to its
essential requirements. As such, it should provide an elaboration of an enterprise’s
strategy to those properties that are necessary and sufficient to meet these require-
ments. These properties will impact the design of the enterprise, and enable the
steering and coordination of transformation programmes and projects.

Meaning Given that the main purpose of an enterprise architecture is to align the design
of an enterprise to its strategy, the essential meaning of an enterprise architecture is
that it provides a normative restriction of design freedom towards transformation
projects and programmes (or put more positively: a reduction of design stress).

Elements In the current understanding of the field, key concepts in the field of en-
terprise architecture include concerns, architecture principles, models, views and
frameworks, while these elements are used to express the enterprise as a system
in terms of its components and their mutual relationships, and the relationships to
its environment.

The many existing definitions of enterprise architecture each have their own focus with
regards to purpose, meaning, and elements. For example, the definitions of enterprise ar-
chitecture provided by IEEE [The00], TOGAF [The09b], ArchiMate [IJLP09] and Gia-
chetti [Gia10], tend to focus on the elements of an enterprise architecture. The Zachman
framework [Zac87] and the GERAM framework [BNS03] also have their focus more

6 Chapter 1 Introduction

on the possible elements (in particular the relevant viewpoints) of an enterprise archi-
tecture. Dietz and Hoogervorst [Die08, Hoo09] define enterprise architecture primarily
in terms of its meaning. The definition provided by Ross et al. [RWR06] touches both
on the purpose and elements aspects, while Op ’t Land, et al. [OPW+08] put the focus
more on its purpose as a means for informed governance for enterprise transformations.

In line with the different definitions, various languages and techniques for enterprise
architecture have been developed in the last decades. In the ArchiMate project [Lan05b],
a language for the representation of enterprise architectures was developed, together
with visualisation and analysis techniques. The resulting ArchiMate language is an
Open Group standard [IJLP09, The09b], and the TOGAF/ArchiMate combination of
standards is playing an increasing role in the marketplace [WS10]. An alternative for
ArchiMate is the Unified Profile for DoDAF/ MODAF (UPDM) [Obj12] from the OMG,
which is based on the USA Department of Defence Architecture Framework (DoDAF)
and the UK Ministry of Defence Architecture Framework (MODAF) respectively.

Initial research for the capturing of architectural design decisions was done during the
ArchiMate project as well [Lan05b, VHP04]. In [PO10] different lines for reasoning
that can be followed in rationalizing architectural decisions are explored in terms of a
real world case study. These lines of reasoning include: motivation of stakeholders,
abstraction of implementation details, abstraction of construction (black-box / white-
box), different aspect systems (business, information, . . .) and their dependence, the
planned / expected future evolution, and the design horizon with which decisions are
made (strategic / tactic / operational). Following this preliminary work, Plataniotis et
al. [PdKP13a, PdKP13c, PDKP14a] develop a framework for the capturing and ratio-
nalisation of enterprise architecture decisions called EA Anamnesis. This framework
formalizes enterprise architecture decisions through meta models.

There are a number of studies investigating how enterprise architecting (or parts of it)
is done, but most are limited to understandings of the authors themselves from prior
or concurrent industrial roles (cf., [KAV05]), anecdotal evidence gathered in indus-
trial cases (cf. [vGvD14]), specific frameworks (cf. [DPvdMM14]), or single companies
(cf. [SR07, NMD14, Nie07]. While such studies are useful for their insights, their are
all limited to a specific scope, and it is not directly clear how these findings compare.

Concluding this brief overview, there are various definitions and language of enterprise
architecture around, each focusing on different aspects of the practice, and there is some
research on understanding the reasoning of architects through case studies or specific
empirical research. However, enterprise architecture is a broad field, and it is not directly
clear which aspects of enterprise architecture to focus on when formalizing reasoning of
enterprise architects.

1.2.2 Methodology

We visualize the overall methodology and contributions of this thesis as a bridge be-
tween artificial intelligence and enterprise architecture (Figure 1.3). This bridge consists
of two main elements:

• Foundations: There are a large number of techniques in artificial intelligence, and
as we have seen above, enterprise architecture is a broad field. The foundation
of the bridge determines which parts of artificial intelligence to connect to which

1.2 Part 1: Characteristics of Enterprise Architecture 7

parts of enterprise architecture. In other words, it clarifies which parts of enter-
prise architecture we focus on, and which techniques from artificial intelligence
we use to support those parts.

• Bricks: Once the foundation is there, the actual bridge can be built. Each brick
is a contribution lying somewhere in between the two fields. We start laying our
bricks from the direction of enterprise architecture, moving towards artificial in-
telligence. As a consequence, the chapters in this thesis will become increasingly
more technical and focused towards artificial intelligence research, and less tied
to specific applications and tools from enterprise architecture.

Figure 1.3: We visualize the methodology, key results, and dependencies between the three
parts of this thesis as a bridge that is being built between artificial intelligence and enterprise
architecture.

The methodology of this first part of the thesis is to develop the foundations of the
bridge, and lay the first brick. In this way, we aim to kill two birds with one stone: We
aim to contribute to the state of the art in enterprise architecture (“laying the first brick”),
and in the process we aim to learn something about which characteristics of enterprise
architect reasoning to focus on (“laying the foundations”).

We perform two case studies from which we learn aspects of high-level decisions of
enterprise architecture. In the first case study, we conduct an empirical study among en-
terprise architects focusing on how they make decisions and which elements they deem
most important. In the second one, we formalize a recently developed framework for en-
terprise architecture decision rationalisation called EA Anamnesis [PdKP13a, PdKP13c,
PDKP14a] using first-order logic. In this second study, it is our goal to understand the
tools that enterprise architects use by formalizing them, and whether it is straightfor-
ward to support their work with an elementary formalization, or whether additional,
more advanced, knowledge representation techniques are required.

8 Chapter 1 Introduction

1.2.3 Research questions

RQ 1. Which aspects of enterprise architect reasoning about high-level
decisions can be supported by decision support systems?

This breaks down into the following two sub-questions.

RQ 1.1. Which aspects are characteristics of enterprise architect reasoning
about high-level decisions?
RQ 1.2. Which of these aspects will be considered in this thesis?

Figure 1.4: The first brick of the bridge: Investigating the relative characteristics of enterprise
architect reasoning by formalizing EA Anamnesis and performing an empirical study.

The result of answering these two subquestions forms the foundation of our bridge and
the first brick (Figure 1.4), consisting of our two case studies Empirical study and an
Ontology. These two studies are divided into two separate chapters.

In Chapter 2, we report on an empirical study on how the practice of high-level decision
making (i.e., decisions in the role of the facilitator of Figure 1.1) in enterprise archi-
tecture is perceived by professional enterprise architects. We do so through a question-
naire incorporating qualitative and quantitative questions, targeting enterprise architects
around the world, in order to determine what they consider to be the important char-
acteristics of enterprise architecture decision making, and whether these characteristics
differ considerably from those in closely related fields such as software architecture.

The most important characteristics of enterprise architecture we found are:

1. Translating strategic goals into an IT strategy

2. Communicating plans of action

3. Explaining decisions instead of making them

4. Qualitative before quantitative data

5. Stronger business focus than other disciplines

6. Politics, emotions, and soft skills play a bigger role than in other disciplines

1.3 Part 2: Goals 9

7. Large number of stakeholders with conflicting views

8. Highly uncertain plans in a changing environment

We use these eight characteristics as yardsticks for a formal theory to support enterprise
architect reasoning. We observe that approaches based on the idea of classical rational-
ity may be less appropriate that those based on bounded rationality, which is motivated
by the observation that our study shows architects often work with incomplete data and
face many types of uncertainty. We propose to use logical theories based on practical
reasoning, since such theories have rich concepts for motivational attitudes such as goals
and intentions, which appear to be playing an important role.

In Chapter 3 we report on our second case study, in which we formalize EA Anemnesis,
a state of the art framework for enterprise architecture decisions rationalization, using
first-order logic. We apply the formal framework to ArchiSurance, a well-known illus-
trative case in the field of enterprise architecture. Our conclusion is that our resulting
formal framework, as well as EA Anamnesis, do not consider many of the characteris-
tics we identified before, which are important for enterprise architect reasoning about
high-level decisions. For instance, motivational attitudes such as goals are not part of
the framework (characteristic 1), different viewpoints of the stakeholders are not taken
into account (characteristic 2, 6, 7), and there is no way to cater for various types of
uncertainty (characteristic 8).

In order to develop more appropriate support for reasoning about high-level decisions
in enterprise architecture, we use various knowledge representation techniques from
artificial intelligence research in the next two parts, focusing respectively on goals in
Part 2, and planning and scheduling in Part 3.

1.3 Part 2: Goals

1.3.1 Background

Goal modeling

In the conclusion of the previous part we recognized translating the strategic goals of
the enterprise into an IT strategy as a key activity (characteristic 1). In this process,
mainly qualitative data is used (characteristic 2, 3, 4) and there are a large number of
stakeholders with conflicting views (characteristic 7).

Translating strategic goals into an IT strategy falls under the the “early-phase” require-
ments engineering activities of an information system, which include those that consider
how the intended system should meet organizational goals, why it is needed, what al-
ternatives may exist, what implications of the alternatives are for different stakeholders,
and how the interests and concerns of stakeholders might be addressed [Yu97b]. This
is generally referred to as goal modeling. Given the number of currently established
methods using goal models in the early stage of requirements analysis (e.g., [LY04,
Don04, DVLF93, CNYM12, CKM02], overviews can be found in [VL01, KL05]),
there is a general consensus that goal models are useful for this purpose. Several goal
modeling languages have been developed in the last two decades. The most popular

10 Chapter 1 Introduction

ones include i∗ [Yu97a], Keep All Objects Satisfied (KAOS) [vL08], the NFR frame-
work [CNYM12], TROPOS [GMS05], the Business Intelligence Model (BIM) [HBJ+14],
and the Goal-oriented Requirements Language (GRL) [AGH+10], which is part of an
ITU-T standard, the User Requirements Notation (URN) [ITU08].

A goal model is often the result of a discussion process between a group of stakeholders
and an enterprise architect. For small-sized systems for which goal models are con-
structed in a short amount of time, involving stakeholders with a similar background,
it is not often necessary to record all of the details of the discussion process that led
to the final goal model. However, enterprise architecture systems - i.e., large-scale IT
infrastructures- are complex and are not constructed in a short amount of time, but rather
over the course of several meetings. In such situations, failing to record the discussions
underlying a goal model in a structured manner may harm the success of the requirement
engineering phase of enterprise architecture for several reasons:

1. It is well-known that stakeholders’ preferences are rarely absolute, relevant, sta-
ble, or consistent [Mar78]. Therefore, it is possible that a stakeholder changes
his or her opinion about a modeling decision in between two goal modeling ses-
sions, which may require revisions of the goal model. If previous preferences
and opinions are not stored explicitly, it is not possible to remind stakeholders of
their previous opinions, thus risking unnecessary discussions and revisions. As
the number of participants increases, revising the goal model based on changing
preferences can take up a significant amount of time.

2. Other stakeholders, such as new architects on the team, who were not the original
authors of the goal model, may have to make sense of the goal model, for instance,
to use it as an input in a later stage or at the design and development phase. If these
users have no knowledge of the underlying rationale of the goal model, it may not
only be more difficult to understand the model, but they may also end up having
the same discussions as the previous group of stakeholders [CKM02].

3. Alternative ideas and opposing views that could potentially have led to different
goal diagrams are lost. For instance, a group of stakeholders specifying a goal
model for a user interface may decide to reduce goals “easy to use” and “fast” to
one goal “easy to use”. Thus, the resulting goal model will merely contain the goal
“easy to use”, but the discussion as well as the decision to reject “fast” are lost.
This leads to a poor understanding of the problem and solution domain. In fact,
empirical data suggest that this is an important reason of requirment engineering
project failure [CKI88].

4. In goal models in general, the rationale behind any decision is static and does not
immediately impact the goal models when they change. That is, it is not possible
to reason about changing beliefs and opinions, and their effect on the goal model.
A stakeholder may change his or her opinion, but it is not always directly clear
what its effect is on the goal model. Similarly, a part of the goal model may
change, but it is not possible to reason about the consistency of this new goal
model with the underlying beliefs and arguments. This becomes more problematic
if the participants constructing the goal model change, since modeling decisions
made by one group of stakeholders may conflict with the underlying beliefs put
forward by another group of stakeholders.

1.3 Part 2: Goals 11

1.3.2 Methodology

In this part we lay the second brick of our bridge between artificial intelligence and enter-
prise architecture. As we mentioned before, our contributions will become increasingly
closer to artificial intelligence, and will increasingly move further away from enterprise
architecture. The second brick is in between artificial intelligence and enterprise archi-
tecture, and therefore will use concepts and techniques from both areas.

Motivated by the characteristics we identified in the previous part, our specific research
goal is to apply techniques from artificial intelligence to the goal modeling process, with
the expectation that doing so will help resolve issues 1-4 above. We identified several
important requirements for our framework:

1. It must be able to formally model parts of the discussion process in the early-
requirements phase of an information system,

2. It must be able to generate goal models based on the formalize discussions,

3. It should have formal traceability links between goal elements and arguments in
the discussions.

The first requirement might seem imprecise, since it does not specify exactly which
parts of the discussion process the framework should capture. However, when taking
the second requirement into account, it should be clear that we should at least capture
the parts of the discussions that are related to goal models.

1.3.3 Research questions

The overall research question of this part is as follows:

RQ 2 Which aspects of enterprise architecture reasoning and goal modeling
can be supported by decision support systems?

Given our background discussion and methodology, this breaks down into the following
sub questions.

RQ 2a How to formalize the discussions between stakeholders about goal
models?
RQ 2b How to generate goal models based on the formalized discussions?

The result of answering these two subquestions forms the second brick of our bridge
(Figure 1.6). In Chapter 4 we develop a framework for argumentation and goal modeling
called RationalGRL. In order to formalize discussions of the early requirements phase
of an information system we use argument schemes and critical questions. We develop
a set of argument schemes and critical questions by analyzing transcripts containing
discussions about the architecture of an information system. We then develop a formal
language for these argument schemes and critical questions, and we develop algorithms
to translate argumentation frameworks to goal models.

12 Chapter 1 Introduction

Figure 1.5: The second brick of the bridge: Goal modeling and argumentation.

1.4 Part 3: Planning and Scheduling

1.4.1 Background

One of the earlier practitioners in system architecture Steven H. Spewak defined en-
terprise architecture planning as “the process of defining architectures for the use of
information in support of the business and the plan for implementing those architec-
tures.” [SH93]. The results of our empirical study in Part 1 show that plans are being
used for communication in enterprise architecture (characteristic 2), and that those plans
have a high level of uncertainty (characteristic 8). This is not surprising, since enterprise
architecture project are often long-term (see Example 1.1). In fact, an important lesson
from the ArchiMate project [Lan05b] was that it is inherently difficult to plan archi-
tectural design. TAFIM, an enterprise architecture model by and for the United States
Department of Defense recommends that in a typical five-year plan, only the first year
is detailed, and the other steps are described only in a very abstract way. At each step
in the plan, not only must the future abstract plans be further detailed, but architectural
designs also have to be reconsidered and possibly revised.

As we already mentioned in Section 1.2.3, we argue that approaches based on bounded
rationality are suitable to support enterprise architecture planning. Bounded rationality
is the idea that the rationality of a decision maker is limited by the tractability of the de-
cision problem, the cognitive limitations of the mind, and the time available to make the
decision. Decision-makers in this view act as satisficers, seeking a satisfactory solution
rather than an optimal one.

In artificial intelligence research, planning research throughout the 1970s and early
1980s was dominated by STRIPS-style classical planning approaches [THA94]. These
approaches focused on algorithms for automatic plan generation, that would take as
input a specification of the current world state, a goal to be achieved and the actions
available to an agent, and would produce as output a plan to achieve the goal state. This
style of planning, it was believed, is a central component in rational action. However,
already by the mid 1980s a number of researchers, of whom Rodney Brooks is prob-
ably the best known [Bro99], began to claim that classical planning approaches were
fundamentally flawed, for both pragmatic and philosophical reasons. From a pragmatic
point of view, STRIPS-style planning algorithms tend to be computationally intractable,
rendering them of limited value to agents that must operate in anything like real-time

1.4 Part 3: Planning and Scheduling 13

environments [Cha87, Byl94]. From a philosophical point of view, it was argued that
much of what we regard as everyday intelligence does not arise from abstract deliber-
ation of the kind involved in STRIPS- style planning, but from the interaction between
comparatively simple agent behaviors and the agent’s environment.

Philosophers often use the concept of intention when speaking about plans. They have
drawn a distinction between future-directed intentions and present-directed ones. The
former guide an agent’s planning and constrain their adoption of other intentions, while
the latter function causally in producing behavior. For example, an architect’s future-
directed intentions may include talking with the stakeholders tomorrow, and her present-
directed intentions may include modifying a presentation now. Bratman [Bra87] argues
that intending to do something (or having an intention) plays an important role in an
agent’s planning: they are high-level plans to which the agent is committed and that she
refines step by step, leading to intentional actions. Intentions therefore play a role that
is intermediate between goals, plans, and actions. Rationally speaking, an agent is more
deeply committed to its intentions, e.g. than to its beliefs. If we think of intentions as
fitting into more complex plans, then reconsidering an intention potentially requires re-
vising an entire plan, which can be computationally expensive and therefore problematic
in real-time. Another aspect of this relative resistance to revision is that intentions, and
the plans into which they fit, can be very useful for bounded agents who need to select
appropriate actions at different times. Both by adopting appropriate policies that can ap-
ply at different times to relevantly similar decision problems, and by devising complex
plans that can be easily followed at some future time when computation and time may
be limited, an agent with intentions may be able to avoid having to perform complex
calculations every time a new decision problem arises.

Inspired by the philosophical literature, in the 1990s artificial intelligence researchers
started to investigate intention. The first full-fledged BDI paper, with formal details and
some results, was the seminal paper by Cohen and Levesque [CL90a]. They laid out a
formal logical language, including modal operators for mental states like “belief” and
“having as a goal”, for temporal expressions, and for descriptions of events such as “A
happens” or “x did action a”. Although widely cited, the formalism has received its
fair amount of criticism as well (e.g., [Sin92a]), and has been revisited various times
(e.g., [HL04]). Rao and Georgeff (e.g., [RG91]), offered an alternative, and arguably
simpler, formalism based roughly on Computational Tree Logic (CTL). They do not
define intentions out of more basic states, and they are also able to handle some of the
motivating puzzles more adequately.

Recently, Herzig et al. [HLPX16] recognize three fundamental problems with existing
BDI theories. One of these problems is that practical and formal approaches evolved
separately and neither fertilized the other. More specifically, they argue that BDI is
poorly connected to other fields such as automated planning. This is remarkable indeed,
given that philosophers regard future-directed intentions as important elements for plan-
ning. Shoham [Sho09, Sho16] recognizes this as well, and proposes a more “compu-
tationally grounded” approach towards intention revision, which he calls the database
perspective. The main idea of this approach is to store attitudes such as beliefs and in-
tentions in separate databases, which are in service of some planner. The planner can
add or remove entries from the database, while the database should remain internally,
and jointly, consistent.

14 Chapter 1 Introduction

1.4.2 Methodology

In this last part of the thesis we lay the last brick of our bridge from artificial intelligence
to enterprise architecture. It is the bridge closest to artificial intelligence, and is therefore
considerably more technical than the other parts.

Recall from Section 1.1 that it is our aim to support enterprise architect reasoning by
developing a logical framework that stores important commitments made during dis-
cussions or meetings. These commitments are based on underlying assumptions, which
can be goals of stakeholders, strategic directions of the enterprise, architecture princi-
ples, etc. We view a plan abstractly as a sequence of commitments in time, and each
commitment in the plan may come with a number of underlying assumptions. If these
underlying assumptions change, then parts of the plan may require revision, which in
turn may invalidate other parts of the plan, and so on. Therefore, assumptions have an
inherently non-monotonic character: they are assumed to be true, unless it becomes clear
they are false. This is related to the resource-boundedness of our problem domain: an
enterprise architect cannot always know all of the assumptions, especially for long term
plans.

The methodology of this part is to formalize the dynamics commitments in time with
underlying assumptions in a BDI logic. We aim to use a BDI formalism to specify the
dynamics of the commitments and assumptions. This will allow the system to serve as a
kind of intelligent calendar, helping enterprise architects and stakeholders to remember
which specific things they have committed themselves to, and whether it is consistent to
add new commitments, or whether underlying assumptions are violated.

1.4.3 Research question

RQ 3 Which aspects of enterprise architecture planning will be considered
in this thesis?

Figure 1.6: The third brick of the bridge: Focusing on planning and scheduling by developing a
BDI logic.

Following Shoham’s database perspective, we view enterprise architecture planning as
a database management problem (see Figure 5.1). In our system, an enterprise architect
is in the process of making plans, possibly with a group of stakeholders, and stores
commitments and beliefs in two database.

1.4 Part 3: Planning and Scheduling 15

Figure 1.7: We view consistency of commitments and beliefs as a database management prob-
lem.

We focus on two main sources for the databases to change:

1. The enterprise architect forms a new belief, e.g. from discussions with stakehold-
ers, or from a piece of data. If the new belief is inconsistent with the existing
beliefs, these beliefs will have to be revised to accommodate it. We give gen-
eral conditions on a single revision with new information that the database has
already committed to incorporating using ideas from the classical AGM postu-
lates [AGM85] approach.

2. The enterprise adds a commitment. We formalize these tasks as future directed
atomic intentions, understood as time-labeled actions pairs (a, t) that might make
up a plan. It is assumed the enterprise architect has already committed to the
intention, so it must be accommodated by any means short of revising beliefs.
The force of the theory is in restricting how this can be accomplished. The job
of the database is to maintain consistency and coherence between intentions and
beliefs.

We divide the contribution of this part over two chapters. In chapter 5 we develop a
logic for beliefs about actions in time. We associate pre-and postconditions with ac-
tions. A key element in our approach is the asymmetry we put on assumptions about
preconditions and postconditions of actions. First of all, we assume that

If an enterprise architect intends to do an action, she assumes the conse-
quences of this action hold.

However, for preconditions we add a weaker requirement:

If an enterprise architect intends to do an action she cannot believe that its
preconditions do not hold.

This requirement is sometimes called strong consistency, and is weaker than Bratman’s
means-end coherence requirement [Bra87]. The result of this weakened requirement is
that preconditions of actions are treated as assumptions: An autonomous agent forms
intentions under the assumption that these preconditions will be made true somewhere

16 Chapter 1 Introduction

in the future. The main technical result of this part is that we axiomatize our logic and
prove it is sound and strongly complete with respect to our semantics.

In Chapter 6 we then study the revision of intentions and beliefs. We develop a set of
postulates in AGM style, and the main technical result is that we prove the Katsuno-
Mendelzon representation theorem. To this end, we define a revision operator that re-
vises beliefs up to a specific time point. We show that this leads to models of system
behaviors which can be finitely generated, i.e. be characterized by a single formula.

1.5 Thesis outline and publications

As mentioned earlier, this thesis contributes to state of the art research in both enterprise
architecture and artificial intelligence. However, different research fields use different
research methodologies. In fields related to the enterprise architecture side of this the-
sis (such as information systems, requirements engineering, or business informatics),
frameworks and theories are usually validated through empirical research, which can
for instance be case studies, interviews, or user tests. These theories are often devel-
oped in iterations, using methodologies such as design science or grounded theory. In
fields related to artificial intelligence side of this thesis (such as knowledge representa-
tion and reasoning), empirical validation is less crucial, and results are often theories or
frameworks that have certain provable properties.

Part Research fields Output Evaluation
Part 1 Enterprise architecture, Logical framework, Illustrative case

Information systems, Empirical study
Software architecture,
Decision theory

Part 2 Requirement engineering, Logical framework, Transcripts
Goal modeling, Algorithms
Argumentation

Part 3 BDI logic, Logical framework, Formal proofs
Belief revision, Completeness result,
Temporal logic Representation result

Table 1.1: Relevant research fields, main results, and evaluation methods of the three parts in
this thesis

As a result, the different parts of this thesis have different outputs and evaluation meth-
ods, depending on what audience they are written for. We list the related fields, main
results, and evaluation methods of the three parts in Table 1.1. Moreover, we briefly
summarize each chapter below.

• Chapter 2: Enterprise Architects High-Level Decision Making: an Empirical
Study

We report on an empirical study on how high-level decision making is perceived
by professional enterprise architects. Our study consists of a questionnaire in-
corporating qualitative and quantitative questions, and is answered by about 30

1.5 Thesis outline and publications 17

enterprise architects. The outcomes is a list of characteristics of enterprise archi-
tecture, which we use as a starting point of the remainder of the thesis.

This chapter is based on joint work with Dirk van der Linden [vdLvZ15].

• Chapter 3: A Logical Framework for EA Anamnesis

We analyze a recent framework for capturing enterprise architecture design de-
cisions called EA Anamnesis and recognize various ambiguities and flaws in the
specification. We propose a more precise formalisation of EA Anamnesis using
first-order logic. Our main conclusion is that our formalism does not offer much
support for the type of reasoning processes specific to enterprise architecture we
found in the previous chapter. More notably, reasoning about goals, considering
various viewpoints of stakeholders, and reasoning about plan dynamics are lack-
ing.

This chapter is based on joint work with Georgios Plataniotis, Diana Marosin, and
Dirk van der Linden [vZPvdLM14].

• Chapter 4: RationalGRL: A Framework for Argumentation and Goal Mod-
eling

We investigate to what extent argumentation techniques from artificial intelligence
can be applied to goal modeling. We develop argument schemes and critical ques-
tions for goal modeling by analyzing transcripts. We formalize the argument
schemes in logic and develop algorithms for the critical questions, we call our
framework RationalGRL.

This chapter is based on joint work with Floris Bex, Sepideh Ghanavati, and Diana
Marosin [vZG14, MvZG16, vZMBG16, vZMGB16]

• Chapter 5: A Logic for Beliefs about Actions and Time

We develop a logic for temporal belief bases, containing expressions about tempo-
ral propositions (tomorrow it will rain), possibility (it may rain tomorrow), actions
(the robot enters the room) and pre- and post-conditions of these actions. This
logic is motivated by Shoham’s database perspective.

This chapter is based on joint work with Dragan Doder, Mehdi Dastani, and Leon
van der Torre [vZDDvdT15a, vZDDvdT15b]

• Chapter 6: The Dynamics of Beliefs and Intentions

We introduce intentions to our logic and we formalize a coherence condition on
beliefs and intentions. In order to do this we separate strong beliefs from weak
beliefs. We provide AGM-style postulates for the revision of strong beliefs and
intentions: strong belief revision may trigger intention revision, but intention re-
vision may only trigger revision of weak beliefs. After revision, the strong be-
liefs are coherent with the intentions. We show in a representation theorem that
a revision operator satisfying our postulates can be represented by a pre-order on
interpretations of the beliefs, together with a selection function for the intentions.

This chapter is based on joint work with Dragan Doder, Mehdi Dastani, and Leon
van der Torre [vZDSvdT14, vZ15, vZD16]

18 Chapter 1 Introduction

• Chapter 7: Conclusions
We draw conclusions and summarize the contributions of this thesis by answering
the research questions.

• Appendix: Proofs
The appendix consists of five parts. First, we provide the design instructions used
in the transcripts of Chapter 4. Secondly, we provide excerpts of those transcripts.
Thirdly, we provide a specification of a goal model in our formal language, which
also comes from Chapter 4. Fourth, we provide full proofs of all the main theo-
rems of Chapter 5, and fifth, we provide some simulation results of initial future
work of Chapter 6.

Part I

Characteristics of Enterprise Architecture

19

2

Enterprise Architects High-Level
Decision Making: an Empirical Study

Abstract In this chapter we report on an empirical study on how high-level decision
making is perceived by professional enterprise architects. Our study consists of a ques-
tionnaire incorporating qualitative and quantitative questions, targeting enterprise archi-
tects. The result is a list of characteristics of enterprise architecture high-level deci-
sion making, including goal-oriented decision-making, the importance of communica-
tion, making decisions with much uncertainty and changing environments, emotional
decision-making, high level of politicization, and subordination to business manage-
ment. We suggest approaches based on bounded rationality are suitable to formalize
these characteristics.

2.1 Introduction

There are large number of theories and frameworks for enterprise architecture (see pre-
vious chapter), but these frameworks rarely document design decisions and underly-
ing assumptions explicitly. This is surprising, given the importance of decisions in re-
lated disciplines. For instance, in the domain of software architecture, Tyree and Ak-
erman [TA05] recognized that architecture decision capturing plays a keys role in what
they call “demystifying architecture”. They stress that architecture decisions should
have a permanent place in the software architecture development process. Moreover, it
facilitates traceability from decisions back to requirements and it provides agile docu-
mentation, which is crucial in an agile process where a team does not have the time to
wait for the architect to completely develop and document the architecture.

The empirical study we report on in this chapter aim to take a first step into this direction
by contributing to the following aspects:

1. Developing an ontology for enterprise architecture high-level decision making.
As a first step towards providing support for decision rationalisation in enterprise
architecture, it is useful to determine an ontology: What are the elements we have
to consider, what are the relationships between these elements? While many char-
acteristics of enterprise architecture are common knowledge among practitioners,
they are less explicitly available in literature. At the very least, our results can be
used as a validation for existing (and new) work aiming to support architects by
showing that the problem they address is one important to practitioners, or helping
such work to consider additional elements.

2. Understanding the issues enterprise architects face in decision making. Both by

21

22 Chapter 2 Enterprise Architects High-Level Decision Making: an Empirical Study

explicitly asking what aspects practitioners perceive to be most critical during
their decision making process and investigating the characteristics of that process,
we can have a more empirically grounded list of focal points for research (and
practical) efforts to address. While many issues are stipulated and approached
from a theoretical point of view, investigating what issues of decision making are
most salient to practitioners in the field might paint a different picture and thus
require refocusing of enterprise architecture research efforts.

3. Making explicit the differences with other fields. By understanding practition-
ers’ perceptions, we can also investigate how similar and different they perceive
decision making in other related fields to be, like for example software or informa-
tion architecture. For software architecture this is of particular interest, as some
frameworks and (design) research efforts in enterprise architecture make implicit
assumptions that the two fields are strongly similar. Given the wider scope of en-
terprise architecture, involving also organizational structures, business processes,
value exchanges, and so on, such claims needs proper support. As there is much
insight into what software architects do [Kru08] (in contrast to work stipulating
what they ought to do [Ber08, McB07]), and recent work has investigated so em-
pirically [SUS14, SH15], drawing comparisons between how similar the fields are
experienced by their practitioners becomes a feasible exercise.

Our research objective is to study these aspects and in doing so elicit data that gives
insights into the general practice of enterprise architecture as well. We will do so by
performing qualitative work with a diverse amount of participants active as enterprise
architects. Our specific focus in on high-level decisions. This means we focus on the
decisions made when the enterprise architect is in the role of facilitator (figure 2.1).
There clearly are many other types of decisions, but our current focus is on these types
of decisions. The reason for this choice is that we expect this role is what sets enterprise
architecture apart from other disciplines.

Figure 2.1: Two roles of an enterprise architect from the introduction

Section 2.2 explains the method and details of the empirical study, and an overview of
the results is given in Section 2.3. These are discussed in detail in Section 2.4, and
their implications for decision support are discussed in Section 2.5. Section 2.6 finally
discusses related work, thread to validity, and issues that are left open.

2.2 Methodology 23

2.2 Methodology

In this section we give an overview of how we gathered the participants, the procedure
of the study, used questions, and how we processed the results.

2.2.1 Participants

We specifically targeted enterprise architecture practitioners by posting an invitation
to the study on several LinkedIn groups centered around (the use of) enterprise archi-
tecture, enterprise architecture methods, or tools (e.g., groups such as The Enterprise
Architecture Network1, TOGAF(R)2, Enterprise Architecture Forum3, Enterprise Archi-
tecture4, ArchiMate5, Enterprise Architecture & Processes6, and others). Our approach
is motivated by other studies explaining how to gather participants from online commu-
nities [GT14]. By doing so, it was possible to target a diverse number of participants
from both geographical as professional background. This prevented us from having a
limited professional context focusing on single companies or geographical areas. Partic-
ipants were asked to fill out the questionnaire online, and were offered no reward except
a copy of the research results, when available.

2.2.2 Procedure

The study consists of a questionnaire with three main parts, which we now discuss in
turn.

Professional profile

The profile of the participants was built based upon the following questions, partially
inspired by other recent studies investigating similar issues in software architecture dif-
ficulties [TGA13].

• What are your main activities as an enterprise architect during the decision making
process?

• What modeling languages and techniques do you use?

• Are you internal or external to the company you perform enterprise architecture-
related activities for?

• Do you have experience with other architecture fields such as software or infor-
mation architecture? If so, to what degree do you find the decision making process
to be different than in enterprise architecture?

1https://www.linkedin.com/groups/36781
2https://www.linkedin.com/groups/60545
3https://www.linkedin.com/groups/36248
4https://www.linkedin.com/groups/54337
5https://www.linkedin.com/groups/50758
6https://www.linkedin.com/groups/118419

https://www.linkedin.com/groups/36781
https://www.linkedin.com/groups/60545
https://www.linkedin.com/groups/36248
https://www.linkedin.com/groups/54337
https://www.linkedin.com/groups/50758
https://www.linkedin.com/groups/118419

24 Chapter 2 Enterprise Architects High-Level Decision Making: an Empirical Study

Aspects of decision making (open questions)

In the second part we asked open questions about the difficulties they face in their role
as an architect, their involvement and views on design decisions, and what kind of data
they use.

• What is your role in the process of making enterprise architecture-related deci-
sions?

• What makes an enterprise architecture decision difficult for you?

• Related to the last question, what are the most important (or critical) aspects of an
enterprise architecture decision for you?

• What kinds of input do you use for enterprise architecture decisions, and of those,
do you favor qualitative or quantitative data to base your decisions on?

Group vs. individual deci-
sion

Final vs. refined decisions Quantitative vs. qualita-
tive data

I take a decision by myself Time constraints do not al-
low me to consider all deci-
sion alternatives

I prefer numerical data to
base my decisions on

I take decisions after con-
sulting others

I take a decision without
knowing exactly what the
outcome will be

I prefer discussions with
people to base my decisions
on

Decisions are taken by a
committee

Decisions often have to be
reconsidered, which also af-
fects other decisions

It is easier to make decisions
that are based on hard data

Decisions are taken by a
group of architects

Decisions are often refined In general there is sufficient
numerical data available to
make decisions

The final decision comes
down to a single person

When I make a decision, it is
final

Discussions with stakehold-
ers offer more insight than
numerical data

Table 2.1: Used Likert Scale Statements. Each statement was answered with “strongly disagree”
(1) to “strongly agree” (5)

Aspects of decision making (multiple-choice)

In the third and last part, we asked participants to judge to what extent they agreed with
a number of statements on a 5 point Likert scale (ranging from ‘strongly disagree’ to
‘strongly agree’). These were created to give insight into how participants feel about the
decision making aspects detailed below.

• Whether decisions are group decisions or individual decisions.

• Whether decisions are final or iteratively refined due to time constraints or changes
in underlying assumptions.

2.3 Results 25

• Whether the data used for decision making is mostly qualitative (e.g., discussions,
opinions) or quantitative (e.g., statistical data).

For each of these three aspects we showed five statements that could each be answered
with a number 1-5, ranging from “strongly disagree” (1) to “strongly agree” (5) 2.1.

2.2.3 Analysis method

The results from all open questions were gathered and classified per question. We then
used counted occurrences of common threads between participants, both on single word
and phrase basis (e.g., multiple occurrences of the term “time constraints” for the ques-
tion “what makes an enterprise architecture decision difficult?”). This technique was
used to build an overview of the general trend for the answers. After doing so we went
through the answers again to find answers that specifically conflicted with this trend,
and use them to discuss the attitudes of the participants towards the questionnaire.

To estimate the general tendency for each answer in the Likert scale we calculated the
median of each question’s answers (given the ordinal nature), which we used to de-
termine whether the majority of participants had a polarized (i.e., strong agreement or
disagreement) or neutral attitude towards them.

2.3 Results

All (anonymized) results of this study can be found on the Github page of this thesis:
https://github.com/marcvanzee/RationalArchitecture/, in the folder “Ch2 em-
pirical study”.

We received 35 full responses to the questionnaire, with many more partial or empty
responses discarded. The textual answers were analyzed and coded, and will be dis-
cussed in more detail in the next section. There was no strong bias towards external or
internal employees, with 17 indicating being external to the companies they provided
EA services for, 15 being internal, and the remaining 3 gave no answer. The location of
the participants was diverse, with many countries represented. A total of 18 participants
were from (> 5) European countries, 9 from North America, 3 from South America,
2 from Australia, 1 from Africa, 1 from Middle East, and finally 1 from an unknown
origin. See Fig. 2.2 for an overview.

For the Likert scale, we selected the statements with strong responses (either positive
and negative), and emphasized those with a low response variation in their responses
(indicating consensus among the participants). These statements are not used as statis-
tically generalizable findings, but as verification for the analysis of the qualitative data,
and to ensure they both corroborate each other (table 2.2).

2.4 Analysis

In this section we analyze the results of the participants by describing the dominant
views held by participants for the different aspects we studied. We try as much as pos-

https://github.com/marcvanzee/RationalArchitecture/

26 Chapter 2 Enterprise Architects High-Level Decision Making: an Empirical Study

49%	
43%	

9%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

External	 Internal	 No	 Answer	

(a) Ratio of internal/external

51%	

26%	

9%	 6%	 3%	 3%	 3%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

Eu
rop
e	

No
rth
	 Am

eri
ca
	

So
uth
	 Am

eri
ca
	

Au
str
ali
a	

Afr
ica
	

Mi
dd
le	
Ea
st	

No
	 An
sw
er	

(b) Originating locale

Figure 2.2: Overview of participant information: The ratio of internal/external architects (a) and
in which region they operate (b).

Table 2.2: Strongly polarized (≥ 4 and≤ 2, positive and negative) Likert scale items. Statements
in bold had particularly low variation and were thus most strongly (dis)agreed on.

Statement Polarity
I take a decision by myself

DisagreeWhen I make a decision, it is final
In general there is sufficient numerical data available to make decisions
I take decisions after consulting others

Agree

Decisions are taken by a committee
Time constraints do not allow me to consider all decision alternatives
Decisions are often refined
I prefer discussions with people to base my decisions on
It is easier to make decisions that are based on hard data
Discussions with stakeholders offer more insight than numerical data

sible to let the participants speak for themselves, showing their actual responses.

2.4.1 Main activities

Translating strategic goals into an IT strategy Unsurprisingly, there is a clear focus
on ensuring the IT strategy is aligned with the company’s business goals. Thus, a large
portion of the enterprise architect’s time is spent on working towards future states of the
enterprise, less so on the current state (e.g., modeling it, analyzing it). As stated, they
spend a lot of time and effort to:

“Seek the strategy, the strategic goals (qualitative) and objectives (quan-
titative) and then derive the information required to achieve them.”

“To discover, understand and verify the business goals/objectives as set
by upper management.”

2.4 Analysis 27

“I provide a degree of analysis of our businesses needs and require-
ments”

“Gather business strategy & goals, Gather current pain points and limi-
tations (e.g. budget, timelines, organizational barriers)”

“Relate de content and the message to de strategic goals of the organi-
sation. Describe the implication, risks and alternative.”

Communicating plans of action Related to the previous point, enterprise architects
often guide discussions with management about the IT strategy.

“the use of Architecture Artifacts from a variety of disciplines and pro-
fessions need to be harmonized into a consumable form (easily digestible
and understandable) to guide / aid the decision process for a stakeholder
(presumably a senior business person) who is responsible for strategy.”

“creating support within the enterprise for a specific solution or spe-
cific solution paradigm, so that the decisionmakers are confronted with this
paradigm - second opinions about given architectures or decision proposals”

“communication with stakeholders and ’deciders’ investigation and com-
parison of scenario’s”

“Leading discussions to prepare decision making. In these discussions
EA models are used or drawn up. Results are written down in decision
memo that list pro’s and cons and formulates an advise.”

“Organising collective decision making on proposed changes, based on
the proposals and know how available in the organisation.”

Enterprise architects seem to concertize the strategic goals, by providing concrete ac-
tions to be taken.

“. . . and then use those as inputs to model a set of potential courses of
action.”

“. . . providing a recommended course of action if possible”

“Helping investment decision makers consider alternative future change
to their business, and monitoring the impact of the change as its being cre-
ated and implemented.”

28 Chapter 2 Enterprise Architects High-Level Decision Making: an Empirical Study

Explaining decisions instead of making them This, already in describing their main
activities it becomes clear that while enterprise architects work on the future state of an
enterprise, there is a clear difference between those who propose (designs, decisions,
strategies for) the future of the enterprise, and those who have the power to actually take
it there. See, for example:

“Often I frame the decisions to be made and then propose various op-
tions with supporting data. Usually the option that I feel is the best is clear
through that data. However, the senior leaders who own the decisions need
to be the ones who actually make it.” (emphasis added)

“The Architect is more a facilitator even if one of the stakeholders.”

It seems thus that the enterprise architect is not making the strategic decisions, but
merely playing the role of an expert or adviser. Sometimes the data only has to be
integrated and simplified so it can be understood by management.

“models and data already exist, and need to be integrated and used to-
wards the future state”

2.4.2 Modeling languages and techniques

When asked about the modeling languages and techniques participants used in their
daily work, the whole gamut of languages came by. The usual suspects such as UML,
BPMN, ArchiMate (for Western European EAs, at least) were represented, as well as
long existing techniques like Flowcharts, IDEF languages, and so on, but just as well
less known languages such as IBM and Oracle suites, ScIAM, SAINT, DNDAF, SCOR,
RDF, Rummler-Brache, and so on.

Simple diagrams for communication However, more important than what language or
technique they used was how well models created with it are received:

“[I favor] simple diagrams, text and tables that can be understood by all
stakeholders”

Multiple participants make a distinction between the audience of models and informa-
tion, and that a distinct purpose followed from that: modeling to capture knowledge,
and modeling to communicate knowledge. Practically speaking, very little formal or
complicated modeling languages and techniques were actually shown to the business
stakeholders when communicating with them:

“Primary tool for communicating is PowerPoint.”

“. . . but really powerpoint, excel and visio are more suitable for a non-
technical audience.”

“In dialogue with management I do not use modeling languages or tech-
niques.”

2.4 Analysis 29

2.4.3 Qualitative/quantitative data

Qualitative data before quantitative Participants reiterate it is often not possible to
obtain quantitative data directly, and even more so, that quantitative data is meaningless
without the qualitative data. In other words, it is necessary to clarify the motivation (e.g.,
strategic goals of the enterprise) before starting quantitative analysis.

“Kinds of inputs: strategies, directives, policies discussions and work-
shops with stakeholders I do not have a particular favor”

“You cannot derive quantitative data unless you know what qualitative
goals need to be satisfied (e.g. a strategy is rarely quantitative).”

“All kinds of input, but mainly discussions with stakeholder and the
documentation they take with them.”

“Discussions, theories, case studies are mostly giving qualitative data.
Real quantitative data about business processes are scarce in my organisa-
tion.”

In order to make decisions, architects confirm that both types of data are required. This
ranges from quantitative data about the operation of the enterprise, to qualitative data
involving the actual people making up the enterprise. Both kinds of data are needed:

However, they also mention quantitative data is the end-goal to base the future state of
the enterprise on.

“You really need both types. Some are hard to quantify but are crucial to
future success. Discussions with stakeholders, analyst reports and risk anal-
yses are most often used to compare alternative roadmaps and solutions.”

“Quantitative criteria-based evaluation matrices for the component/so-
lution recommendation decisions; qualitative data for the policy decisions.”

“Ultimately, you should be able to translate all qualitative data into
quantitative data. Otherwise, decisions will be based on good intentions
and results are extremely hard to measure.”

2.4.4 Differences with other architecture fields

Many participants had experience working in other digital architecture fields (e.g, soft-
ware, information, data architecture). One participant argued that the primary difference
between these fields arose simply from the professional culture of their domain:

“The other disciplines of architecture vary by ‘consulting practice’ as
this is still an emerging and evolving discussion amongst architects and
practitioners.”

30 Chapter 2 Enterprise Architects High-Level Decision Making: an Empirical Study

Stronger business focus than other disciplines Participants generally found enterprise
architecture to have a broader focus and depth, with the scope and impact of design
decisions potentially far greater in enterprise architecture. These differences were often
explained by enterprise architecture having a much stronger business focus than compa-
rable fields, from which also a higher abstraction level followed:

“The 2 main differences between Enterprise and domain specific deci-
sion making is that the enterprise level is judgemental as to what are the
better components that align with the business goals (i.e. you can’t ‘prove’
it is the ‘best’ fit) and that the perspective is more holistic and at a higher
level of abstraction.”

“The decisions are at much more of a business level in Enterprise Archi-
tecture (business capabilities, strategy, etc.). Decisions for software archi-
tects are typically much more technical (frameworks, interfaces, etc). [. . .]
they are two different levels of abstraction.”

“EA is socially constructed and is, in this regard, more of a business
than a technological discipline.”

Politics, emotions, and soft skills play a bigger role than in other disciplines While
some participants state that software architecture is not fundamentally different from
enterprise architecture (at least in regards to the decision making process), they do show-
case the different nature of achieving support for a future state or design, corroborating
points made earlier by other participants that enterprise architecture has many more hu-
man and ‘soft’ aspects that need to be dealt with:

“Fundamentally the decision making process is not different. In soft-
ware and information architecture, most decision proposals have a high de-
gree of rationality and [a] blue print character. In enterprise architecture
more psychological techniques play a role, e.g. creating support by ad-
dressing emotions, sharing ideas, creative collaboration etc.”

“EA decision making process has more political, personal etc. influ-
ences. Demands more communication and soft-skills. Software architecture
decision making is (much) more straightforward fact based.”

“[. . .] the stakeholders involved in making the enterprise architecture
are more likely to include political motives in their decision making process
which makes it much more ‘fuzzy’. Creating a software architecture for
example is in my experience a far more ‘objective’ process.”

This focus on addressing emotions and dealing with people during design come forward
quite clearly in responses by participants describing what an Enterprise Architect should
be able to do:

2.4 Analysis 31

“[. . .] EA decisions tend to be more conceptual and thus affected by
levels of understanding, and personal bias. Hence softer skills are required
e.g. language skills, emotional intelligence, consensus drawing.”

To be fair and include all opinions given by participants, not all agree on the unique
nature of enterprise architecture compared to other digital architecture fields, let alone
any architecture (although not going in much more detail to support such stance):

“There is no difference. Architecture is architecture is architecture.
Only the target changes. . . . If there were differences, it wouldn’t be ar-
chitecture.”

2.4.5 Difficult aspects of design decisions

As participants stated already in other aspects, high-level design decisions are not simple
to make, especially when compared to fields they perceive as more technical and rational
like software architecture.

Large number of stakeholders with conflicting views Related to the communication as-
pect, an important difficulty in the decision making are the large number of stakeholders
with different interests and different backgrounds, and dealing with conflicting goals.

“So many stakeholders....”

“First and foremost, a lack of clear input on the business goals and
objectives, unclear or poorly formed needs analysis from directly effected
stakeholders, short time frames and unclear or undefined financial commit-
ment”

“[. . .] inability of business leaders to articulate their goals/objective
specifically enough.”

“Real commitment of boardmembers and other stakeholders. Words as
transparency and compliancy are often political issues in practice.”

“The politics. Making a design decision based on principles and best
practices is not difficult. Making it such that my stakeholders see the value
in where I’m going, and see the benefit of going there with me, is much
more difficult and interesting.”

Participants perceived such politics to not be only limited to the decision takers or high-
level business and convincing them to support a particular future state, but expressed the
views that the entire context of enterprise architecture is highly politicized:

“In a political environment, clarity and direction are not always liked.”

32 Chapter 2 Enterprise Architects High-Level Decision Making: an Empirical Study

“Conflicting interests from different stakeholders, some more politically
motivated than fact based.”

“Conflicting goals, e.g. save money and implement quickly. Lack of
knowledge about the business or available products that meet the needs of
the business.”

High uncertainty and a changing environment The fact that design decisions are often
long-term gives them a high amount of uncertainty. Moreover, since the uncertainty is
high, there are many assumptions on which these decisions are based, which are often
subject to change.

“Variability, Number of Variables, Amount of Uncertainty, Lack of In-
formation, Delays in decision making, Shifting Dates & Boundaries”

“ Dealing with great uncertainty Dealing with complex organization
structure and politics where lots of different stakeholders have different in-
terests”

“[...] unclear or poorly formed needs analysis from directly effected
stakeholders, short time frames and unclear or undefined financial commit-
ment.”

“EA design decisions are always difficult. Lack of information and time
constraint are typical reasons.”

“Lack of information is the biggest obstacle to making decision.”

2.5 Characteristics of enterprise architecting

2.5.1 List of characteristics

The analysis above contains a list of italic statements summarizing our findings. Recall
that our specific focus in this study was on the role of the facilitator (Figure 2.1). The
characteristics are as follows:

1. Translating strategic goals into an IT strategy

2. Communicating plans of action

3. Explaining decisions instead of making them

4. Qualitative before quantitative data

5. Stronger business focus than other disciplines

6. Politics, emotions, and soft skills play a bigger role than in other disciplines

2.5 Characteristics of enterprise architecting 33

7. Large number of stakeholders with conflicting views

8. Highly uncertain decisions in a changing environment

None of these characteristics should be very surprising for anyone working in the field of
enterprise architecture, be it in practice or in research. They are in line with many of the
observations, definitions, and case studies from the field. However, when put together
like this, they allow us use them as yardstick for determining which approaches may be
appropriate in order to develop decision support using artificial intelligence techniques.

One direction of research that we deem suitable for modeling some of these charac-
teristics is bounded rationality, which we briefly discuss in the next part, starting with
rationality.

2.5.2 Rationality

Rationality is the habit of acting by reason, which means in accordance with the facts
of reality.7 Rationality implies the conformity of one’s beliefs with one’s reasons to
believe, or of one’s actions with one’s reasons for action. The term has different special-
ized meanings in philosophy, economics, sociology, psychology, evolutionary biology,
and political science. For instance, in economy, rationality is often understood as con-
forming to some set of postulates describing rational behavior. Consider for instance the
subjective expected utility model, where uncertainty is represented by a set of states of
the world E1, ...,En. Possible outcomes are set of consequences and a decision alterna-
tive, known as an act, is a function from states of the world to consequences, denoted
by x = (x1, ...,xn), where xi is the consequence of state Ei.

The decision maker’s beliefs are represented by a subjective probability distribution
p = (p1, ..., pn), and her values for consequences are represented by a utility function
v(x). Its subjective expected utility (SEU) is then defined as:

SEU(x) = Ep[v(x)] =
n

∑
i=1

piv(xi).

This idea was first proposed by Daniel Bernoulli in 1738, but the idea of seeking to
maximize expected value was discarded, but revived by von Neumann and Morgen-
stern (see [VNM07] for an overview), who considered the case that states of the world
have objectively known probabilities, and later by Savage in 1954 [Sav72], who showed
that the expected-utility model could be derived from simple axioms of consistent pref-
erences under risk and uncertainty. The model of von Neumann and Morgenstern is
extended to include situations where probabilities are subjectively determined by the
decision maker.

In approaches such as those discussed in the previous paragraph, rationality is cap-
tured by a minimal set of postulates describing rational behavior, such that it corre-
sponds to a unique decision principle. The candidate actions in these approaches are
assumed to be feasible. Various groups of research in artificial intelligence dealing with
decisions follow the above type of approach. For instance, research using Bayesian

7http://www.importanceofphilosophy.com/Ethics Rationality.html

34 Chapter 2 Enterprise Architects High-Level Decision Making: an Empirical Study

networks [Pea88], or planning under uncertainty (e.g., [DKKN95]) fall into this cate-
gory, as well as more qualitative frameworks for decisions, but still in the same line
of thoughts (e.g., [DT99, DP95, TP94]). Planning under uncertainty is often formal-
ized using Markov decision processes, a mathematical framework for modeling (single-
agent) decision making in situations where outcomes are partly (probabilistically) ran-
dom and partly under control of the decision making. Markov decision processes are
useful for studying a wide range of optimization problems, solved via dynamic pro-
gramming or reinforcement learning. Yet another example based on classical decision
theory is multiple-criteria decision analysis [BS02, GFE05]. This is a sub-area of op-
erations research that explicitly evaluated multiple criteria in decision making, where
cost or price are often one of the main criteria, and some measure of quality is typically
another criteria.

2.5.3 Bounded Rationality

Bounded rationality is the idea that the rationality of a decision making is limited by
the tractability of the decision problem, the cognitive limitations of the mind, and the
time available to make the decision. Decision-makers in this view act as satisficers,
seeking a satisfactory solution rather than an optimal one. Herbert A. Simon proposed
bounded rationality as an alternative basis for the mathematical modeling of decision-
making, as used in economics, political science and related disciplines. It complements
classical rationality, which views decision-making as a fully rational process of finding
an optimal choice given the information available. Simon used the analogy of a pair
of scissors, where one blade represents “cognitive limitations” of actual humans and the
other the “structures of the environment”, illustrating how minds compensate for limited
resources by exploiting known structural regularity in the environment [GS02].

Studies about bounded rationality have flourished in the last decades and have shed light
on the meaning of artificial intelligence itself: an intelligent program should not (or
even cannot) provide the optimal solution, but the best solution net of the computational
costs [RW91, ZR93, BD94, SW02]. Doyle [Doy88] expresses this aim as follows: “the
agent reflects on its circumstances, abilities, and limitations to rationally guide its own
reasoning and internal organization [. . .]. Rational self-government includes direct
control of the path and amount of reasoning performed”.

It is now possible to design “systems” that are capable of taking their own computa-
tional resources into consideration during planning and problem solving [BD94, p.245].
In particular, the role of meta-reasoning has been formalized: it “consists of running a
decision procedure whose purpose is to determine what other decision procedures [e.g.,
planners] should run and when” (ibid., p.248). The time used by the decision proce-
dure is important since, in real time problem situations “the utility of a given action
varies significantly over the time necessary for a complete solution of the decision prob-
lem” [RW91]. In parallel, the agent paradigm has provided a unifying point of view
over many branches of AI. Some of the agent models have received particular attention
from the formal point of view: in particular, the BDI agent model, a ‘cognitive’ model
of agenthood which assumes that agents, as well as humans, are driven by their men-
tal representations; the leading mental attitudes are beliefs, desires and intentions. To
face the resource boundedness problem, Bratman [Bra87] proposes to use the currently
intended plans to limit the set of actions to be considered.

2.6 Discussion 35

We believe such type of formalisms, based on rich psychological human attitudes, are
appropriate when formalizing high-level decisions in enterprise architecture reasoning.
The characteristics show that mental attitudes such as goals and intentions play an im-
portant role in the discussions. Moreover, due to the complexity of the domain, orig-
inating partially from a large number of stakeholders and a long perspective, bounded
rationaliy is an important factor.

2.6 Discussion

2.6.1 Related work

There is research focusing on what makes an architect a good architect – but those
studies often still leave in the middle just what the investigated people do in a regular
day’s work (cf. [SP08, Got13]). As such, while prescribing skills and characteristics
architects ought to have, they offer little empirical insight into what architects currently
do, especially in regards to decision making. Understanding the practice is important,
because the multitude of existing views on enterprise architecture have been said to
“provide heterogeneous and fragmented views of the domain” [KTZT12] and because
existing frameworks for decision making in enterpise architecture are not grounded on
empirical research in enterprise architecture, but rather on work in related areas such as
software architecture [vZPvdLM14]. Extensive literature studies detailing the use and
benefits of enterprise architecture (e.g., [TSSR11]) offer little further insight into the
actual daily practice, involving no grounding of enterprise architecture in the context of
its practitioner’s perceptions.

Other studies do attempt to investigate how enterprise architecting (or parts of it) is
done, but are limited to understandings of the authors themselves from prior or con-
current industrial roles (cf. [KAV05], whose study was “based on our experience, and
discussions with other enterprise system architects”), or anecdotal evidence gathered in
industrial cases (cf. [vGvD14]) and therefore are not based on primary empirical work.
Some studies are limited to specific literature (cf. [DPvdMM14], whose focus only on
closed questions based on one specific enterprise architecture framework). Some stud-
ies investigate actual companies, but usually in limited scope, for example earlier stud-
ies focusing on the use of enterprise architecture in a single aspect of Federal Govern-
ment [SR07], Czech companies [NMD14], or Finnish companies [Nie07]. While such
studies are useful for their insights, comparing the findings in order to gain a general
understanding of the enterprise architecture practice brings additional issues of interpre-
tation along. For example, the investigation method, context, and questions posed in
these studies are not similar, and thus makes it difficult to relate results to each other.

Some of the few contributions attempting to investigate how enterprise architecture
is perceived by those practicing it are for example Dankova [Dan09] and Mentz et
al. [MKvdM12]. However, Dankova’s work is limited in this regard by being essentially
a corpus analysis of existing definitions. Mentz et al.’s more ambitious attempt incorpo-
rating hermeneutic phenomenology to compare understandings of enterprise architec-
ture between practitioners and researchers also only focuses on existing definitions and
frameworks and does not actively investigate the views these people have themselves.

36 Chapter 2 Enterprise Architects High-Level Decision Making: an Empirical Study

2.6.2 Open issues

Our empirical study is a first attempt into understanding how practitioners in enterprise
architecture perceive their work. In the context of this thesis it plays the role of an un-
derlying motivation, but the main contributions of thesis can be in found other chapters.
Therefore, the empirical study we present here is not in-depth, and one could spend
an entire Ph.D. thesis on this subject. One of the main open issues is that this type of
research should be done in a more principled and elaborate way.

Another interesting point of research is to investigate to what extent the fields enterprise
architecture and software architecture are different. We tried to do so in a very prelimi-
nary way, but much more work can be done here. In particular, in current times software
architecture is much more integrated into the business domain, with much more flat hi-
erarchies in modern software companies such as Google, Facebook, and Amazon. It is
therefore the question if there still is a big difference between the two fields, and if we
should perhaps distinguish between “traditional software architecture” and “software
architecture 2.0”, which is much closer to enterprise architecture.

In the remainder of this section we focus on the internal validity and external validity of
this study.

Internal validity: We did not presume a prior ‘correct’ interpretation of enterprise archi-
tecture on participants, instead allowing them to share their perception in order to avoid
biasing participants into a specific view on enterprise architecture. We treated the Likert
scale answers ordinally, calculating the median in order not to assume knowledge about
the relative distance between individual answer pairs. While this gives less information
than calculating averages or means, they still offer a clear insight into the general polar-
ity of each group we investigated. The polarity of the answers of this scale (Table 2.2)
was in line with the findings of the qualitative work, further ensuring the consistency of
the participants’ responses.

External validity: While qualitative research as ours does not have the aim to generate
statistical inferences to general groups, ensuring that the sample of participants is rep-
resentative of enterprise architecture on a community as a whole is still an important
aspect. To do this we reached out via LinkedIn to ensure targeting enterprise architec-
ture practitioners worldwide, and in our analysis also ensured that no particular country
become dominant in the views, as can be seen in Figure 2.2(b). This helped in achieving
a saturation of information which is most vital for these types of studies [Mas10]. Given
the diversity of responses and drop-off of new information, this seems to have been
reached. Furthermore, our sample size seems to be well in range of the mean sample
size (=31) for qualitative studies [Mas10].

However, it should be kept in mind that the view of practitioners that software archi-
tecture is somehow more rational and hard than enterprise architecture seems to not be
in line with other recent findings such as Sherman and Hadar’s study [SH15], as their
results reveal that (software) architects perform a variety of human-centered activities
such as mentoring, leadership, reviewing and management.

2.6 Discussion 37

2.6.3 Conclusion

We give an outline of the practice of high-level decision making in contemporary enter-
prise architecture based on a qualitative study of how enterprise architects perceive their
professional work. This leads to a list of eight characteristics, which we use as yard-
sticks for a formal theory underlying a decision support system for enterprise architect
reasoning. We observe that approaches based on bounded rationality may be appropriate
to model these characteristics. The reason for this is that our characteristics show that
enterprise architecture has many types of uncertainty due to its long-term perspective
and large number of stakeholders.

3

A Logical Framework for EA Anamnesis

Abstract In this chapter we perform our second case study into the characteristics of
enterprise architecture. We analyze a recent framework for capturing enterprise archi-
tecture design decisions called EA Anamnesis from a formal point of view and recognize
various ambiguities and flaws in the specification of the framework. We then propose
a more precise formalisation of EA Anamnesis using basic notions of first-order logic.
Our main conclusion is that our formalism, and thus EA Anamnesis as well, does not of-
fer much support for the type of reasoning processes specific to enterprise architects we
found in the previous section. More notably, reasoning about goals, considering various
viewpoints of stakeholders, and reasoning about plan dynamics are lacking.

3.1 Introduction

In this thesis we explore the possibility of explicitly linking architecture-level design
decisions with their underlying assumptions. In this chapter, we contribute to this in two
ways:

1. We formalize a recently proposed framework for decision making in enterprise
architecture by Plataniotis et al. [PdKP13b, PDKP14b] called EA Anamnesis using
first-order logic. This is the first contribution of this thesis, and contributes to the
state of the art research in enterprise architecture.

2. We use this formalisation exercise as a case study in order to understand the do-
main of enterprise architecture better. In the previous chapter we concluded with
a list of characteristics of enterprise architecture decision making. In this chapter,
we explore whether we are able to capture these characteristics using our simple
formalism.

EA Anamnesis is an approach towards capturing high-level decisions and issues in en-
terprise architecture. It is able to capture various aspects of decisions and provides
connections with the existing enterprise architecture modeling language ArchiMate. In
this modeling language, one can create the architecture of an enterprise. This is in some
sense comparable to the architecture of a piece of software, with the important differ-
ent that the relations between the information system and the business domain is made
more explicit. One of the shortcomings of ArchiMate is that it is not possible to docu-
ment which decisions were made when creating the models. This is the main motivation
for the EA Anamnesis framework.

EA Anamnesis consists of a metamodel that serves as a basis for decision design graphs
composed of enterprise architecture decisions, issues, observed impacts, and several

39

40 Chapter 3 A Logical Framework for EA Anamnesis

types of dependency relations. In this chapter we analyze the correspondence between
the metamodel and the decision design graphs, and we note various technical flaws. We
propose a formal framework that captures the decision design graphs more precisely.
Moreover, motivated by providing a better guidance on the use of the framework for a
priori decision analysis and support, we extend the framework to cater for a more ex-
pressive notation of decision state, and we make precise several informally introduced
concepts of Plataniotis et al. using integrity constraints. We apply our framework to
a well-known artificial example called ArchiSurance, and show the benefits of our for-
mal approach by demonstrating the possibility for a priori decision analysis through
consistency checks on the integrity constraints.

The rest of this chapter is structured as follows: In Section 3.2 we provide an illustra-
tive case that we use throughout the chapter. In Section 3.3 we discuss the framework
of Plataniotis et al. and its various shortcomings; In Section 3.4 we use this discus-
sion as a motivation to present our formal framework; In Section 3.5 we validate our
framework for a priori decision analysis by applying it to our ArchiSurance use case;
Finally, in Section 3.6 we provide a discussion, containing open issues, related work,
and a conclusion.

3.2 Illustrative case: ArchiSurance

Figure 3.1: Subset of the ArchiMate elements and relationships. Yellow colored elements be-
long to the business layer, and cyan colored elements below to the application layer. Elements
belonging to the technology layer have been omitted.

In this section we introduce the ArchiSurance example, that we will use to validate our

3.2 Illustrative case: ArchiSurance 41

logic-based framework in Section 3.5. Since we model this case in ArchiMate, we first
explain the main concepts of this language.

3.2.1 ArchiMate

ArchiMate is an Open Group1 standard enterprise architecture modeling language. It
distinguishes itself from other languages such as Unified Modeling Language and Busi-
ness Process Modeling and Notation (BPMN) by its scope on enterprise modeling as a
whole. It is a language for describing the construction and operation of business pro-
cesses, organizational structures, information flows, IT systems, and technical infras-
tructure. This is comparable to an architectural drawing in classical building where the
architecture describes the various aspects of the construction and use of a building. This
insight helps the different stakeholders to design, assess, and communicate the conse-
quences of decisions and changes within and between these business domains.

The Archimate framework divides the enterprise architecture into a business, applica-
tion and technology layer. In each layer, three aspects are considered: active elements
that exhibit behavior (e.g. Process and Function), an internal structure and elements
that define use or communicate information. One of the main objectives of the Archi-
Mate language is to define the relationships between concepts in different architecture
domains.

We provide the meaning of several ArchiMate elements and relationships in Figure 3.1.
Elements pertaining to the business layer are colored yellow, and elements pertaining
to the application layer are color cyan. The implementation layer has been omitted,
since we do not consider it in our example. Various elements can be used to connect
the elements in different layers, and in this way one can provide an overview of the
dependencies between business and IT.

3.2.2 ArchiSurance

This ArchiSurance case is inspired by a paper on the economic functions of insurance
intermediaries [CD06], and is the running case used to illustrate the ArchiMate language
specifications [JBQ12]. ArchiSurance is the result of a recent merger of three previously
independent insurance companies, that now sells car insurances products using direct-
to-customer sales model. The goal of the newly created company is to reduce the cost
of operation and products.

The merger has resulted in a number of integration and alignment challenges for the new
company’s business processes and information systems. These challenges appear in the
ArchiSurance baseline business, application, data and technology architecture.

Figure 3.2 presents the partial (business and application layers) ArchiSurance’s direct-
to-customer sales model, modeled with the enterprise architecture modeling language
ArchiMate.

Two business services support the sales model of ArchiSurance: “Car insurance reg-
istration service” and “Car insurance service”. ArchiMate helps us to understand the
dependencies between different perspectives on an enterprise. For example, in Fig-

1See http://www.opengroup.org/standards/ea

http://www.opengroup.org/standards/ea

42 Chapter 3 A Logical Framework for EA Anamnesis

Figure 3.2: ArchiSurance direct-to-customer EA model [PdKP13b]

ure 3.2 we see that the business service “Car insurance registration service” is realized
by a business process “Register customer profile”. In turn, we also see that this business
process is supported by the application service “Customer administration service”.

Although removing intermediates in the supply chain leads to a decrease of operation
costs, it also increases harmful risk profiles [CD06]. Such profiles lead insurance com-
panies to calculate unsuitable premiums or, even worse, to wrongfully issue insurances
to customers. As a response, ArchiSurance decides to use intermediaries to sell its in-
surance products. After all, compiling accurate risk profiles is part of the core business
of an intermediary [CD06]. In our scenario, an external architect call John is hired by
ArchiSurance to help guide change to an intermediary sales model. John uses Archi-
Mate to capture the impacts that selling insurance via an intermediary has in terms of
business processes, IT infrastructure and more.

For illustration purposes we will focus on the translation of the new business process
“Customer profile registration” to EA artifacts in the application layer. The resulting
ArchiMate model is depicted in Figure 3.3. Here we see for example how a (new) busi-
ness process “customer profile registration”, owned by the insurance broker (ownership
being indicated by a line between the broker and the business process), is supported
by the IT applications “customer administration service intermediary” and “customer
administration service ArchiSurance”.

When we compare Figure 3.2 with Figure 3.3 we see that various changes have been
made, but we do not know why these changes are made. We do not know which is-

3.3 EA Anamnesis 43

Figure 3.3: ArchiSurance intermediary EA model [PdKP13b]

sues the modelers faced, nor do we know which decisions they made to resolve them.
This is what EA Anamnesis aims to provide: a rationalization of the decisions made in
ArchiMate.

3.3 EA Anamnesis

In this section we briefly review the key components of the EA Anamnesis frame-
work [PdKP13b], followed by a discussion of its limitations. We use these observations
as a basis for the formal framework that we introduce in the next section.

3.3.1 Metamodel and decision design graphs

Plataniotis et al. [PdKP13b, PDKP14b] recently presented an approach for relating en-
terprise architecture decisions. Using a metamodel and a decision design graph, they ex-
plain how decisions from different enterprise domains (business, application, and tech-
nology) relate to each other. For example, how decisions taken on a business level affect
IT decisions and vice versa. Their approach is inspired by well-known mechanisms

44 Chapter 3 A Logical Framework for EA Anamnesis

for capturing architectural rationales in software architecture. The metamodel that was
presented by Plataniotis et al. is depicted in Figure 3.5. This metamodel serves as an un-
derlying model for design decision graphs. The legend for these design decision graphs
is given in Figure 3.4, and an example of a design decision graph is shown in Figure 3.8.

Figure 3.4: Legend for the design decision graphs of EA Anamnesis

From now on, we will use the following naming convention: We will refer to the meta-
model in Figure 3.5 as “the metamodel”, and the decision design graph in Figure 3.8 as
“the decision graph”.

The metamodel consists of the following elements:

• EA Decision represents a decision that has been made or rejected in order to
resolve an issue. An EA decision shows decisions that are captured in the context
of an Enterprise Transformation [POtL10]. The decision graph contains a total of
13 decisions, from EA Decision D01 to EA Decision D13.

• EA Issue represents an architectural design problem that enterprise architects have
to address during the Enterprise transformation process. In this way, they can be
regarded as a motivation for the design decisions. The decision graph contains 6
issues, from EA Issue IS01 to EA Issue IS06.

• EA Artifact serves as a bridging concept towards the EA modeling language
ArchiMate, whereby an EA artifact links EA decisions to ArchiMate concepts.
For instance, EA Decision D01 in the decision graph is related to EA artifact
“Customer profile registration Business processes”. EA issues are not related to
artifacts.

• Layer is in line with the ArchiMate language [IJLP12]: An enterprise is specified
in three layers: Business, Application and Technology. Using these layers, an
enterprise architect is able to model an enterprise holistically, showing not only
applications and physical IT infrastructure (which are contained in the application
and technology layers), but also how the IT impacts/is impacted by the products,
services and business strategy and processes. EA Decisions are related to layers,
for instance in the decision graph EA Decision D01 is related to the Business
Layer, while EA Decision D06 is related to the Application Layer.

3.3 EA Anamnesis 45

Figure 3.5: EA decisions relationship metamodel [PdKP13b]

• State represents the state of an EA Decision, which is either Executed or Rejected.
In an executed state, an EA decision has already been made and was accepted.
A rejected decision, on the other hand, is a decision that was considered as an
alternative during the decision making process but was rejected because another
decision was more appropriate. In the decision graph, the state of a decision is not
explicitly represented but it can be inferred from the relationships. A decision that
has an alternative relation with an issue is rejected, while all other decisions are
executed.

• Relationship makes the different types of relationships between EA decisions ex-
plicit. Based on ontologies for software architecture design decisions, Plataniotis
et al. define four relationships. The Translation relationship illustrates relation-
ships between decisions and issues that belong to different EA artifacts. Dur-
ing the enterprise transformation process architects translate the requirements that
new EA artifacts impose (EA issues) to decisions that will support these require-
ments by means of another EA artifact. Decomposition relationships signify how
generic EA decisions decompose into more detailed design decisions within an
EA artifact. Alternative relationships illustrate the EA decisions that were rejected
(alternatives) in order to address a specific EA issue. Substitution relationships il-
lustrate how one EA decision replaces another EA decision. An EA decision can
be replaced when it creates a negative observed impact in the enterprise architec-
ture.

• Observed Impact signifies an unanticipated positive/negative consequence of an
already made decision to an EA artifact. This is opposed to anticipated conse-
quences, as indicated by the Translation and Decomposition relationships. The

46 Chapter 3 A Logical Framework for EA Anamnesis

main usefulness of capturing observed impacts is that they can be used by ar-
chitects to avoid decisions with negative consequences in future designs of the
architecture [PdKP13b].

For instance, in the decision graph Decision D10 decomposes to decision D11
through issue IS06. D11 turns out to have a negative observed impact OI1, which
is translated to a decision D13 through issue IS07 (alternative D12 for IS07 is
rejected). D13 addresses the negative observed impact of D11 by substituting
D11.

3.3.2 Limitations of the metamodel

The metamodel of Figure 3.5 should serve as the underlying formalism for the decision
graph, but in this subsection we motivate why this is not sufficient by discussing the
differences and ambiguities between the metamodel and the decision graph. We will
take these remarks into account when formalizing the decision graph in the next section.

• First of all and most importantly, it is very difficult to asses whether the metamodel
correctly formalizes the decision graph, simply because EA Anamnesis only pro-
vides a single example of the decision graph. Therefore, we are left to guess what
the meaning is exactly. The only thing we can do is observe various relationships
in the decision graph, and guess what their intended meaning is.

• According to information shown in the decision graph, the creation of a transla-
tion/decomposition relationship between two EA Decisions implies the creation
of two separate relationships of the same type: one for the EA Decision to EA
Issue and another one for the EA Issue to EA Decision. This creates information
redundancy issues because this is not captured in the metamodel. The definition of
at least one relationship of a specific type should imply that the other relationship
should be of he same type. For example, in the decision graph EA Decision 01 is
related with EA Issue 03 through a translation relationship. Similarly, EA Issue 03
is related with EA Decision 06 through a translation relationship. The definition
of the relationship type between EA Issue 03 and EA Decision 06 should imply
the same relationship type between EA Decision 01 and EA Issue 03, but this is
currently not captured in the metamodel.

• More generally, the metamodel specification of the four types of relationships
seems to allow a number of unwanted models. For instance, it is possible for the
relationships to be reflexive (an EA decision contains a Relationship, which again
may contain the same EA decision), and it is possible for an EA decision to be
related with an EA Issues through more than one relationship. Furthermore, an
EA Decision can contain a Relationship, which then can contain more than one
EA Issues again. Thus, an EA Decision can be related with multiple EA Issue
through a single relationship, which is clearly unwanted.

• The metamodel provides two different types of states (executed, rejected) per EA
Decision. Despite the fact that these two states adequately describe the state of
an EA Decision during the a posteriori analysis, they don’t provide enough ex-
pressivity in the a priori case. In the latter case, there is the need to express that

3.4 A formal model for EA decision modeling 47

an EA Decision is in “open” state while enterprise architects examine the alterna-
tives [KLvV06].

• Whereas the metamodel provides the notion of “Observed impact”, it does not
explicitly distinguish between “positive observed impact” and “negative observed
impact”. For instance, in the decision graph EA Decision D11 has Observed Im-
pact OI1, which creates an issue IS07. Thus, it seems that this observed impact is
negative, but neither the metamodel or the graph are able to distinguish positive
impacts from negative ones.

• Finally, there are a number of assumptions on the design graph that have not been
made explicit in the metamodel. Firstly, all issues in the graph have been re-
solved. Secondly, there is always a single decision that is executed in order to
solve an issue, while the others are rejected. Finally, a decision that creates a
negative observed impact is assumed to be replaced by a decision that addresses
this impact. These three assumptions are not formalized, and we propose to do so
using integrity constraints. Note that we do not argue that these three assumptions
should always hold in any problem domain. Rather, they are assumptions of the
work of Plataniotis et al. and our current goal is simply to formalize it.

3.4 A formal model for EA decision modeling

In the previous section we showed that the metamodel of Figure 3.5 is not restrictive
enough to characterize the design decision graph of Figure 3.8 correctly. In order to
resolve this issue and to obtain a consistent formalisation for the decision design graphs
that allow for a priori decision modeling, we will introduce a formal model in this
section.

3.4.1 Elementary definitions for EA decision modeling

Basic concepts from first-order logic with equality and the unique names assumption
are adequate to define the entities in the metamodel and the relations between them.
We begin with representations for the metamodel elements EA Decision, EA Issue, and
Observed Impact.

Definition 3.1 (EA Issue). Let I be a set of EA Issues, where each issue i∈ I is a sentence
representing the issue.

Rationale and example: An EA decision issue (short: issue) represents a single design
concern. For now, we follow Plataniotis et al. and we do not add any attributes to the
issues, but we recognize that this is certainly possible and a necessary extension. For
instance, Zimmerman et al.[ZKL+09], attribute a total of 18 properties to issues that can
be used to characterize them. Because such attributes do not have a specific purpose in
our formal model, we leave them out for ease of exposition. The issues in the decision
graph are I = {IS01, . . . , IS07}.

Definition 3.2 (EA Decision). Let Art be a set of ArchiMate artifacts, and let ε ∈ Art
be the “empty” artifact. Let D be a set of EA Decisions, where each decision in D

48 Chapter 3 A Logical Framework for EA Anamnesis

is a tuple (d,s,a, l) consisting respectively of a sentence d representing the decision,
a state s ∈ {open,executed,re jected}, an Artifact a ∈ Art, and a layer l ∈ {business,
application, technology}. We also write sd,ad , and ld to refer to respectively the state,
the artifact, and the layer of decision d. If a = ε, the decision is made independent of an
ArchiMate artifact.

Rationale and example: An EA Decision presents a possible solution to the design
issue that is expressed by an EA Issue. The state s represents the current state of the
decision. While Plataniotis et al. distinguish two different states of a decision (a decision
is either “executed” or “rejected”), we extend this with an additional state “open”. As
we mentioned in the previous section, this is motivated by the fact that we aim to capture
a priori decision analysis, which is different from the ex post approach of Plataniotis et
al. The EA artifact a of an EA Decision represents the EA artifact to which this decision
is related. Finally, the layer l is the layer on which the decision is made. Similar to
EA Issues, we leave out additional attributes that do not have a specific purpose in our
model. In the decision graph, Decision D06 can be represented with (d,s,a, l), where
d =D06, s= executed,a= “Customer administration intermediary application service”,
and l = application. Decision D04 can be represented with (d,s,a, l), where d =D04,
s = re jected, a = ε, and l = application.

Definition 3.3 (Observed Impact). Let O be a set of observed impacts, where each ob-
served impact o = (oi,v,a, l) consists of a string oi describing the observed impact, a
value v ∈ {positive,negative}, an EA Artifact a, and a Layer l. When v = positive we
say that o is a positive observed impact; when o = negative we say that o is a nega-
tive observed impact. We also write vo,ao, and lo to refer respectively to the value, the
artifact, and the layer of observed impact o.

Rationale and example: An observed impact is either positive or negative, where neg-
ative observed impacts create new issues. This formalization allows for an explicit dis-
tinction between positive and negative observed impacts. In the decision graph, the
only observed impact is OI1, which is negative, so we can formalize this as (oi,v,a, l),
where oi =OI1, v = negative,a = “Customer profile registration Business process”, and
l = business.

Definition 3.4 (Contains relation). Let≺D⊆ I×D be a contains relation between issues
and decisions, ≺I⊆ D× I be a contains relation between decisions and issues, ≺Oin⊆
D×O be a contains relation between decisions and observed impact, and ≺Oout⊆O× I
a contains relation between observed impact and issues. We set the general contains
relation ≺=≺D ∪ ≺I ∪ ≺Oin ∪ ≺Oout . If (a≺ b), then we say that a contains b or that b
is contained in a. We sometimes abbreviate (a≺ b)∧ (b≺ c) with a≺ b≺ c.

Rationale and example: The contains relation is also used in Zimmerman et al. and al-
lows us to define a single hierarchical structure, which serves as a table of content, allow-
ing the user to locate issues and alternatives easily in the enterprise architectural knowl-
edge and helping the knowledge engineer to avoid undesired redundancies. The con-
tains relation is the underlying dependency relation that we use to build decision design
graphs (which are simply trees in our formalization). We will use this relation to later de-
fine the four types of Relationship entities that were introduced in the metamodel. These
four relationships are relatively complex, so it helps to have a simple underlying repre-
sentation of the decision hierarchy. Intuitively, the contains relations can be obtained by

3.4 A formal model for EA decision modeling 49

treating all arcs in the decision graph as of the same type. It contains for instance the
following relations: D01 ≺ IS01 ≺ D02,D01 ≺ IS02 ≺ D03,D01 ≺ IS03 ≺ D04 (see
figure 3.6), but also D11≺ OI1≺ IS07.

Definition 3.5 (Substitution relation). Let Sub : D×D be a substitution relation between
decisions. If Sub(d1,d2) we say that decision d1 substitutes decision d2, or that decision

d2 is substituted by decision d1. We also denote this by d1
S−→ d2,

Rationale and example: We separate replacing decisions from the contains relation of
the previous definition, so that we are able to formalize the decision graphs of EA Anam-
nesis as trees with a replacement relation. The only place where decisions are replaced
is when a negative observed impact is addressed. For instance, the decision graph has
one replacement relation, namely D13 S−→ D11.

Figure 3.6: The contains relation ≺ for part of the decision graph.

Definition 3.6 (Decision Design Tree). A decision design tree D = (D∪ I ∪O,≺,Sub)
consists of a set of decisions D, a set of issues I, a set of observed impacts O, a contains
relation ≺ that induces a tree containing issues, decisions, and observed impacts of
decisions, and a substitution relation Sub.

Rationale and example: Modeling architectural decisions in itself is not new: Ran and
Kuusela also propose (but do not formalize) the notation of design decision trees [RK96].
Zimmermann et al. propose a formalization that is comparable to ours, but our is specif-
ically for enterprise architecture decision making, and we separate the substitution rela-
tions, which allows us to use trees instead of graphs.

3.4.2 Layered decision model and logical relations

The elementary definitions from Section 3.4.1 allow knowledge engineers to capture
decisions and organize the knowledge in a decision hierarchy. However, the resulting
ordered architectural decision tree does not yet support the vision of an active, managed
decision model taking a guiding role during architecture design. More relations between
decisions, issues and observed impacts must be defined. In this section, we introduce
the four relationship of Plataniotis et al. and formalize several logical constraints.

50 Chapter 3 A Logical Framework for EA Anamnesis

Definition 3.7 (Translation relation). The translation relationship RT ⊆ D× I×D is a

three-placed decision-issue-decision relationship RT (d1, i,d2), also denoted with d1
T (i)−−→

d2, that connects two decisions through an issue where these decisions are related to dif-
ferent EA artifacts. Formally, given some decision design tree D2,

d1
T (i)−−→ d2 iff (d1 ≺I i≺D d2)∧ (ad1 6= ad2).

Rationale and example: Translation relationships indicate how a decision on one artifact
translates to a decision on another artifact through an issue. Thus, having a translation
relationship requires three entities: a decision, a issue, and another decision. For in-

stance, the design graph contains the translation relationship D01
T (IS03)−−−−→ D06. This is

a valid relationship, since we have D01≺I IS03≺D D06, and we also have aD01 6= aD06
because aD01 =“Customer profile registration Business process” and aD06 =“Customer
administration intermediary application service”. Note that the condition ad1 6= ad2 al-
ready ensures that d1 6= d2, which avoids the relation to be reflexive. Furthermore, note
that we now require the unique names assumptions, which assumes that elements with
different names always refer to different entities in the world.

Definition 3.8 (Decomposition relation). The decomposition relationship RD ⊆D× I×
D is a three-placed decision-issue-decision relationship RD(d1, i,d2), also denoted with

d1
D(i)−−→ d2, that connects two decisions through an issue where these decisions are re-

lated to the same EA artifact. Formally:

d1
D(i)−−→ d2 iff (d1 ≺I i≺D d2)∧ (ad1 = ad2)∧ (d1 6= d2).

Rationale and example: Decomposition relationships are similar to translation rela-
tionships, with the only difference that in decomposition relationships the two arti-
facts belonging to the decisions in the relation should be the same. The last condi-
tion ensures that the relation is not reflexive.3 For instance, the design graph con-

tains the decomposition relationship D01
T (IS01)−−−−→ D02, which is valid because we have

D01≺I IS01≺D D02, aD01 = aD02 =“‘Customer profile registration Business process”,
and D01 6= D02.

Definition 3.9 (Alternative relation). The alternative relationship RA ⊆ I×D is a two-
placed issue-decision relationship, also denoted with i A−→ d, that connects an issue with
a rejected decision. Formally:

i A−→ d iff (i≺D d)∧ (sd = re jected).

Rationale and example: The alternative relationship indicates decisions that have been
rejected in the decision process. For instance, in the design graph we have IS03 A−→ D04
and IS03 A−→ D05.

2Note that all variables in the formulas are implicitly universally quantified. We have left the quanti-
fiers out for readability.

3Actually, the fact that we define D as a tree induced by ≺ already ensures this, but we have left it in
for completeness.

3.4 A formal model for EA decision modeling 51

Definition 3.10 (Observed Impact relation). The observed impact relationship RO ⊆
D×O×I×D is a four-placed decision-impact-issue-decision relationship, also denoted

with d1
O(o,i)−−−→ d2, which describes the effect of a negative observed impact on a decision,

which is addressed by an issue and subsequently resolved by a decision. Formally:

d1
O(o,i)−−−→ d2 iff (d1 ≺Oin o≺Oout i≺D d2)∧ (vo = negative)∧ (d2

S−→ d1).

Rationale and example: The observed impact relation is the only relation in the design
graph that is not characterized by the metamodel. In the decision graph, EA Decision
D11 causes a negative Observed Impact OI1, which is addressed by EA Issue IS07, that
is subsequently resolved by EA Decision D13.

With these relations introduced, we will now define three logical constraints on our
decision models. We stress that this list is by no means meant to be exhaustive. Instead,
it is a list of constraints that are suggested by Plataniotis et al.. These constraints are
used to check the decision graph for consistency. If the graph is not consistent, we
can locate the inconsistency by determining what constraint is violated and for which
element. This is useful input for the architect in the decision making process.

Integrity Constraint 1. All issues should be resolved; For each issue, there should be
a decision that is contained in this issue and that is executed4:

∀i∈I∃d∈D((i≺D d)∧ (sd = executed))

Rationale and example: An issue represents an architectural design problem that enter-
prise architects have to address during the enterprise transformation process. Having a
consistency check for the status of the issue by verifying whether a decision has been ex-
ecuted to resolve it can assist the architect in detecting “loose ends”. This is particularly
useful in large and complex graphs with many interdependent nodes [KS93].

Integrity Constraint 2. If a decision that is contained in an issue is executed, then all
other decision that have a relation with that issue should be rejected:

∀i∈I : (∃d∈D : ((i≺D d)∧ (sd = executed)))⇒
(∀d′ 6=d : (i≺D d′)⇒ (sd′ = re jected))

Rationale and example: This constraint describes a dependency between decisions that
are contained in the same issue. The decision graph suggests that issues are solved by
a single decision. This means that when a decision is executed that is contained in an
issue, all other decision that are contained in this issue should be rejected. For instance,
because decision D06 is executed, both decision D04 and D05 are rejected. Note that
it would be possible to combine Constraint 1 and 2 into a single constraint. However,
we separated them since Constraint 1 can be met while Constraint 2 is violated, which
allows us to provide more detailed error messages.

Integrity Constraint 3. If a decision contains a negative observed impact, then this
decision should be replaced by a decision addressing the negative impact:

∀d∈D,o∈O : ((d ≺Oin o)∧ (vo = negative))⇒∃d′∈D,i∈I : (d
O(o,i)−−−→ d′).

4Note that we now do add quantifiers since we mix universal quantification and existential quantifica-
tion.

52 Chapter 3 A Logical Framework for EA Anamnesis

Rationale and example: The goal of having negative observed impacts is to be able to
reconsider decisions that have caused this impact. This constraint addresses this idea
by stating that negative observed impacts should result in the substitution of the deci-
sion that has caused the impact. For instance, decision D11 contains observed impact

OI1. This constraint is satisfied for this impact because we have D11
O(OI1,IS07)−−−−−−−→ D13,

indicating that decision D13 substitutes decision D11.

3.5 Validation with ArchiSurance

In this section we demonstrate how the formal framework introduced in Section 3.4
supports a priori decision analysis of design graphs by consistency checks using the
integrity constraints.

Recall the illustrative example of ArchiSurance that we introduced in Section 3.2. Our
external architect John is in the process of transforming the ArchiMate model of Fig-
ure 3.2 into Figure 3.3. For the implementation of these EA artifacts a number of EA
decisions have to be made. John, in parallel with ArchiMate modeling language, uses
our approach to capture the relationships of decisions and check the consistency of the
decision graph.

Figure 3.7: ArchiSurance scenario: Integrity constraint 1 is violated because EA Issue IS03 is
not resolved

John starts by adding the main decision: “Make customer profile registration via inter-
mediary” (D01) to the decision design graph. This decision belongs to the EA artifact
“‘Customer profile registration Business process”. After the enterprise has decided to
make this decision, three new issues arise, IS01, IS02, and IS03. Both IS01 and IS02
are addressed by making a decision that related to the same artifact. For IS03, which
stands for “Create an appropriate application service to support new business process”,
there are three different decisions that can be made in the Application Layer, namely
D04, D05, and D06 (see Figure 3.7, the legend of the relations is in Figure 4.5). At
this moment, none of these three decisions have been made, so the status of these three

3.5 Validation with ArchiSurance 53

Fi
gu

re
3.

8:
E

A
de

ci
si

on
s

re
la

tio
ns

hi
ps

vi
su

al
iz

at
io

n5

54 Chapter 3 A Logical Framework for EA Anamnesis

decisions is still open. Thus, in figure 3.7 there are two Decomposes relations, namely

D01
D(IS01)−−−−→D02 and D01

D(IS02)−−−−→D03, and the other relations are simply Contains re-
lations: D01≺ IS03, IS03≺ D04, IS03≺ D05, IS03≺ D06. After John has created the
graph of Figure 3.7, he checks it for consistency. It turns out that integrity constraint 1
is violated: Not all issues are resolved because for issue IS03 there is no decision d such
that IS03 ≺D d and sd = executed. John can choose between these three decisions and
selects decision D06, which stands for “Introduce application service A”, as the executed
decision.

After having changed the status of decision D06 from “open” to “executed”, John checks
the consistency of the graph again. This time, another inconsistency arises, namely
that integrity constraint 2 is violated. The reason for this is that since decision D06 is
contained in issue IS03 (i.e., we have IS03 ≺D D06) and D06 is executed (i.e. sD06 =
executed), all other decisions that are contained in IS03 (that is, decision D04 and D05)
should be rejected. Therefore, John decides to change the status of both these decision
from “open” to “rejected”. When John checks the graph for consistency now, he finds
that the graph is consistent.

Decision D06 results in two new issues, of which “Find an appropriate application to in-
terface with the intermediary” (IS05) is solved by “Acquisition of COTS application B”
(D10), resulting in the EA artifact “Customer administration application”. Decision D10
decomposes through issue IS06 in the decision “Application interface type 1” (D11).

Using the concept of an Observed impact, John formalizes that users of “Customer ad-
ministration application” had difficulties using this new application interface. This is
signified by the negative observed impact 01 “Degraded user experience in the appli-
cation use” (OI1). As such, EA decision 11 “Application interface 1” has a negative
observed impact on the business process “Customer profile registration”.

According to integrity constraint 3, a negative observed impact should be addressed by a
decision replacing the original decision that causes the observed impact. Therefore, John
translates the observed impact “Degraded user experience in the application use” via EA
issue 07 “have fitting application interface” into “replace existing application interface
with an interface similar to the old one” (EA decision 13), after having rejected the
alternative decision “Training of users on the new application”. The last step John has
to take is to replace EA decision 11 “Application interface type 1” with EA decision 13
“Application interface type 2”.

When the transformation has finished and all decisions have been made, John obtains the
graph that is depicted in Figure 3.8. This graph is consistent according to the integrity
constraints.

3.6 Discussion

3.6.1 Related work

In the domain of software architecture, which is closely related to enterprise archi-
tecture, several design rational approaches have been developed: argumentation based
approaches such as Issue-Based Information System (IBIS) [KR70], Design Rationale

5Figure adapted from Plataniotis et al. [PdKP13b]

3.6 Discussion 55

Language (DRL) [Lee91], template based approaches, such as [TA05] and model based
approaches, such as [JB05, TJH07]. Most of them capture textually the architecture
decisions, the rationales, the issues and the implications. In addition, the model based
approach provides means to relate those decisions with the software artifacts and with
other decisions.

About twenty years ago, Ran et al. [RK96] proposed a systematic approach to docu-
ment, refine, organize and reuse the architectural knowledge for software design in the
form of a Design Decision Tree (DDT) that is a partial ordering on decisions put in the
context of the problem requirements and the constraints imposed by earlier decisions.
More recently, Tyree and Akerman [TA05] recognized that architecture decision cap-
turing plays a keys role in what they call “demystifying architecture”. They stress that
architecture decisions should have a permanent place in the software architecture devel-
opment process. Moreover, it facilitates traceability from decisions back to requirements
and it provides agile documentation (which is crucial in an agile process where a team
does not have the time to wait for the architect to completely develop and document the
architecture).

Both Zimmerman et al. [ZKL+09] and Tan et al. [TJH07] recently proposed a com-
prehensive framework for decision capturing in software architecture. Zimmermann et
al. also provide a formal framework, focusing mostly on the re-usability of decision by
distinguishing between alternatives and outcomes.

In the field of enterprise architecture the literature is significantly more scarce. To our
knowledge, the work of Plataniotis et al. [PdKP13b] is one of the first approaches to-
wards decision rationalization in enterprise architecture. While most methods for de-
cision modeling and analysis use visual notations from existing modeling methods like
UML and the likes, their underpinnings still inherently benefit from mathematical for-
malizations. Communicating these formalizations to end-users a like does not require
a steep level of training, and can be easily communicated to them [Hal90], nor does
the focus on a more rigorous specification of these mathematical underpinnings forsake
using the other tools and notations that build and rely on them [BH95].

Finally, goal-oriented modeling frameworks (e.g. i*6, Tropos7) provide means to deal
with the motivations of designs, being more expressive than the ArchiMate 2.0. moti-
vation layer. Even so, their main focus is not to provide decision rationales. We turn to
goal modeling in more detail in the next chapter.

3.6.2 Open issues

We demonstrated how some intuitive and simple constraints can be formalized in first-
order logic to check a decision graph for consistency. However, we did not yet present
a framework that will actively search for solutions to inconsistencies and in this way
support the architect in its decision making process. To do so, a more elaborate rep-
resentation of decision quality is needed, such that different decision can be compared
with each other. We see this are promising future work.

The integrity constraints that we have defined in this work are not meant to be a complete
list. As we discussed above, each decision in the metamodel of Plataniotis et al. is either

6http://www.cs.toronto.edu/km/istar/
7http://www.troposproject.org/

 http://www.cs.toronto.edu/km/istar/
 http://www.troposproject.org/

56 Chapter 3 A Logical Framework for EA Anamnesis

Executed or Rejected. Kruchten et al. [KLvV06] argue that design decisions evolve in
a manner that may be described by a state machine or a statechart. They distinguish
between seven different states, which are idea, tentative, decided, approved, rejected,
challenged, and obsolete. Having such an expressive representation of a decision allows
for more complex constraints on the decision making process. This is another direction
of future work.

Finally, one of the biggest challenges in decision capturing is the problem of return of
capturing effort. The fact that it takes architects much time to capture design making
strategies without having a direct benefit might be a discouraging factor. We believe
that our approach simplifies the capturing effort by assisting the architect in its decision
making process. Part of our future research will focus on evaluating the actual practical
usefulness of our approach.

3.6.3 Conclusion

In this chapter we introduce a logic-based framework for capturing relationships be-
tween enterprise architecture decisions. This framework is based on the recent EA
Anamnesis by Plataniotis et al.. We show that EA Anamnesis has a number of flaws
an ambiguities, and we propose a formalization in first-order logic that does not suffer
from these flaws. With this formalization, we allow for capturing decision relationship
dependencies and consistency checks on additional logical dependencies that we for-
malized using integrity constraints.

In the previous chapter we ended with a list of eight characteristics of high-level decision
making in enterprise architecture, and we suggested to use theories based on bounded
rationality as a starting point. Based on the results of the previous chapter, we now
provide two directions of research that we feel are not represented in EA Anamnesis,
as well as in our logical formalization sufficiently, while they do play an important role
in enterprise architecture reasoning about high-level decisions. These two directions of
research are:

• Goals Both our formalisation and EA Anamnesis do not consider the concept of
a goal, or any related motivational attitude such as desires or preferences. This is
surprising, given the important role that goals, and especially the process of trans-
lating high-level goals into an IT strategy plays in enterprise architecture decision
making (see previous chapter). In fact, the ArchiMate language has included the
Motivational Extension, which allows the user to model concepts such as goals,
principles, and values.

• Planning and Scheduling Planning can be defined as the process of thinking about
and organizing the activities required to achieve a desired goal. Due to the high
level of uncertainty, plans in enterprise architecture come with many assumptions
and are subject to change. However, both EA Anamnesis and our formalization
provide no means of reasoning about the dynamics of commitments in time, nor
does it cater for any type of uncertainty in planning.

In the remaining two parts of this thesis we will address both of these shortcomings in
turn.

Part II

Goals

57

4

RationalGRL: A Framework for
Argumentation and Goal Modeling

Abstract In this chapter we focus on one of the main activities of an enterprise archi-
tect, namely to translate high-level goals into more concrete goals and tasks. We in-
vestigate to what extent argumentation techniques can be applied in order to trace back
goals and task to underlying arguments. To this end, we develop argument schemes and
critical questions by analyzing transcripts of discussions about an information system.
We develop the RationalGRL logical framework to formalize these argument schemes,
and we develop algorithms for the instantiating the argument schemes and answering
the critical questions.

4.1 Introduction

Recall from the introduction that the focus of this chapter is on requirements engineer-
ing, which is an approach to assess the role of a future information system within a
human or automated environment. Translating strategic goals into an IT strategy (Char-
acteristics 1 of Chapter 2) falls under the the “early-phase” requirements engineering
activities of an information system, which include those that consider how the intended
system should meet organizational goals, why it is needed, what alternatives may exist,
what implications of the alternatives are for different stakeholders, and how the interests
and concerns of stakeholders might be addressed [Yu97b]. This is generally referred to
as goal modeling.

Goal models are often the result of a discussion process between a group of stakehold-
ers and the enterprise architect. In the introduction of this thesis, we recognized various
shortcoming of leaving details of the discussion process out of the resulting goal model.
Our goal in this chapter is therefore to develop a framework to include discussions be-
tween stakeholders into the goal model, with formal traceability links between elements
of the goal model to relevant parts of the discussions.

For completeness, we reiterate the success criteria of our framework, which are also
listed in the introduction. Please refer to the introduction for more details on our moti-
vation:

1. It must be able to formally model parts of the discussion process in the early-
requirements phase of an information system,

2. It must be able to generate goal models based on the formalized discussions,

59

60 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

3. It should have formal traceability links between goal elements and arguments in
the discussions,

In order to formalize discussions of the early requirements phase of an information sys-
tem (Requirement 1), we use a technique from argumentation and discourse modeling
called argument schemes [WRM08]. An instantiation of an argument scheme gives a
presumptive argument in favor of something. This argument can then be attacked in
various way by answering critical questions. We analyzing transcripts containing dis-
cussions between stakeholders about the architecture of an information system. We an-
notate the arguments and critical questions we find back in these transcripts. The result
is a semi-structured representation of a discussion.

In order to generate goal models based on formalized discussions (Requirement 2), we
formalize the argument schemes and critical questions from Requirement 1 in a formal
argumentation framework. By using argumentation semantics, we can compute which
arguments are accepted and which are rejected. Based on the accepted arguments we
can generate a goal model. This goal model has formal traceability links to the under-
lying (accepted) arguments (Requirement 3). We propose algorithms to apply critical
questions, which generate new arguments and may possibly attack previous arguments.

This chapter is organized as follows. Section 4.2 is introductory; it introduces our run-
ning example, the Goal-oriented Requirements Language, and argument schemes. In
Section 4.3, we develop argument schemes and critical questions by annotating tran-
scripts from discussions about an information system. In Section 4.4 we give various
examples of the argument schemes and critical questions we found in the transcripts, and
in Section 4.5 we develop a formal model for argument schemes and critical questions.
We discuss related work, open issues and conclusions in Section 4.6.

4.2 Background: Goal-oriented Requirements Language and argu-
ment schemes

In this section, we first introduce our running example, after which we introduce the
Goal-oriented Requirements Language (GRL) [AGH+10], which is the goal modeling
language we use to integrate with the argumentation framework. Lastly, we introduce ar-
gument schemes, and in particular, we discuss the practical reasoning argument scheme
(PRAS) [ABC07], which is an argument scheme that is used to form arguments and
counter-arguments about situations involving goals. This will be our starting point in
the next section.

4.2.1 Running example: Traffic Simulator

Most of the examples in this chapter, as well as the topic of discussion in the transcripts
we analyze, come from the traffic simulator design exercise. In this exercise, designers
are provided a problem description, requirements, and a description of the desired out-
comes. The problem description is given in full in Appendix A, and is summarized as
follows: The client of the project is Professor E, who teaches civil engineering at UCI. It
is the task of the designer to specify a system in which the professor can teach students
how various theories around traffic lights work, such as queuing theory. To this end, a

4.2 Background: Goal-oriented Requirements Language and argument schemes 61

piece of software has to be developed in which students can create visual maps of an
area, regulate traffic, and so forth. The original version of the problem descrption [UCI]
is well known in the field of design reasoning since it has been used in a workshop1, and
transcripts of this workshop have been analyzed in detail [PH13]. Although the concepts
of traffic lights, lanes, and intersections are common and appear to be simple, building
a traffic simulator to represent these relationships and events in real time turns out to be
challenging.

4.2.2 Goal-oriented Requirements Language (GRL)

GRL is a visual modeling language for specifying intentions, business goals, and non-
functional requirements of multiple stakeholders [AGH+10]. GRL is part of the User
Requirements Notation, an ITU-T standard, that combines goals and non-functional re-
quirements with functional and operational requirements (i.e. use case maps) in one.
GRL can be used to specify alternatives that have to be considered, decisions that have
been made, and rationales for making decisions. A GRL model is a connected graph of
intentional elements that optionally are part of actors. All the elements and relationships
used in GRL are shown in Figure 4.1.

Figure 4.1: Basic elements and relationships of GRL

Figure 4.2 illustrates a GRL diagram from the traffic simulator design exercise. An
actor () represents a stakeholder of a system (Student, Figure 4.2), or the system
itself (Traffic Tycoon, Figure 4.2). Actors are holders of intentions; they are the
active entities in the system or its environment who want goals to be achieved, tasks to
be performed, resources to be available, and softgoals to be satisfied. Softgoals ()
differentiate themselves from goals () in that there is no clear, objective measure of
satisfaction for a softgoal whereas a goal is quantifiable, often in a binary way. Softgoals
(e.g. Realistic simulation) are often more related to non-functional requirements,
whereas goals (such as Generate cars) are more related to functional requirements.

1http://www.ics.uci.edu/design-workshop/

http://www.ics.uci.edu/design-workshop/

62 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

Tasks () represent solutions to (or operationalizations of) goals and softgoals. In
Figure 4.2, some of the tasks are Create new cars and Keep same cars. In order to
be achieved or completed, softgoals, goals, and tasks may require resources () to be
available (e.g., External Library, Figure 4.2).

Figure 4.2: GRL Model for the traffic simulator.

Different links connect the elements in a GRL model. AND, IOR, and XOR decompo-
sition links () allow an element to be decomposed into sub-elements. In Figure 4.2,
the goal Generate cars is XOR-decomposed to the tasks Create new cars and Keep
same cars. Contribution links () indicate desired impacts of one element on another
element. A contribution link has a qualitative contribution type or a quantitative con-
tribution. Task Create new cars has a help qualitative contribution to the softgoal
Dynamic simulation. Dependency links () model relationships between actors.
For example, actor Traffic Tycoon depends on the actor Student to perform the task
Adjust car spawning rate to fulfill its task Generate cars.

GRL is based on i∗ [Yu97a] and the NFR Framework [CNYM12], but it is not as re-
strictive as i∗. Intentional elements and links can be more freely combined, the notion
of agents is replaced with the more general notion of actors, i.e., stakeholders, and a
task does not necessarily have to be an activity performed by an actor, but may also
describe properties of a solution. GRL has a well-defined syntax and semantics, which
are necessary if we want to incorporate it into a formal framework (requirements 1 and
2 as described in the introduction). Furthermore, GRL provides support for providing

4.2 Background: Goal-oriented Requirements Language and argument schemes 63

a scalable and consistent representation of multiple views/diagrams of the same goal
model (see [Gha13, Ch.2] for more details). GRL is also linked to Use Case Maps via
URNLink () which provides traceability between concepts and instances of the goal
model and behavioral design models. Multiple views and traceability are a good fit with
our current research: we aim to add traceability links between intentional elements and
their underlying arguments.

GRL has six evaluation algorithms which are semi-automated and allow the analysis of
alternatives and design decisions by calculating the satisfaction value of the intentional
elements across multiple diagrams quantitatively, qualitatively or in a hybrid way. The
satisfaction values from intentional elements in GRL can also be propagated to use case
maps elements. jUCMNav, GRL tool-support, also allows for adding new GRL evalua-
tion algorithms [MA09]. GRL also has the capability to be extended through metadata,
links, and external OCL constraints. This allows GRL to be used in many domains with-
out the need to change the whole modeling language. This feature also helps us to apply
our argumentation to other domain such as compliance, which we explain in more detail
in Section 4.6.2.

The GRL model in Figure 4.2 shows the softgoals, goals, tasks and the relationship
between the different intentional elements in the model. However, the rationales and
arguments behind certain intentional elements are not shown in the GRL model. Some
of the questions that might be interesting to know about are the following:

• Why does actor Teacher have only a single softgoal Students learn from
practice? Why is this, for instance, not connected to any of the elements of
Student?

• What does Adjust timing schemes of sensorless interactions mean?

• Why does task Keep same cars contribut positively to Realistic simulation
and negatively to Dynamic simulation?

• How does the Student control the Traffic Tycoon?

• Why does Map design have so many decompositions into other tasks?

These are the type of the questions that we cannot answer just by looking at the GRL
models. The model in Figure 4.2 does not contain information about discussions that
let up to the resulting elements of the model, such as various clarification steps for the
naming, or alternatives that have been considered for the relationships. In this chapter
we aim to address this shortcoming.

4.2.3 Argument Scheme for Practical Reasoning (PRAS)

Reasoning about which goals to pursue and actions to take is often referred to as prac-
tical reasoning, and has been studied extensively in philosophy (e.g. [Raz78, Wal90])
and artificial intelligence [Bra87, ABC07]. One approach is to capture practical reason-
ing in terms of arguments schemes and critical questions [Wal90]. The idea is that an
instantiation of such a scheme gives a presumptive argument in favor of, for example,
taking an action. This argument can, then, be tested by posing critical questions about,

64 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

for instance, whether the action is possible given the situation, and a negative answer to
such a question leads to a counterargument to the original presumptive argument for the
action.

A formal approach to persuasive and deliberative reasoning about goals and actions has
been presented by Atkinson et al [ABC07], who define the practical reasoning argument
scheme (PRAS). PRAS follows the following basic argument structure.

We have goal G,

Doing action A will realize goal G,

Which will promote the value V

Therefore

We should perform action A

So, for example, we can say that

We have goal Generate traffic,

Keep same cars will realize goal Generate traffic,

Which will promote the value Simple design

Therefore

We should perform action Keep same cars

Practical reasoning is defeasible, in that conclusions which are at one point acceptable
can later be rejected because of new information. Atkinson et al. [ABC07] define a
set of critical questions that point to typical ways in which a practical argument can be
criticized by, for example, questioning the validity of the elements in the scheme or the
connections between the elements. Some examples of critical questions are as follows.

1. Will the action bring about the desired goal?

2. Are there alternative ways of realizing the same goal?

3. Are there alternative ways of promoting the same value?

4. Does doing the action have a side effect which demotes some other value?

5. Does doing the action promote some other value?

6. Is the action possible?

7. Can the desired goal be realized?

8. Is the value indeed a legitimate value?

4.2 Background: Goal-oriented Requirements Language and argument schemes 65

These critical questions can point to new arguments that might counter the original argu-
ment. Take, for example, critical question 4: if we find that Keep same cars actually
negatively influences the value Realistic simulation, we have a counterargument to
the above argument. Another way to counter an argument for an action is to suggest
an alternative action that realizes the same goal (question 2) or an alternative goal that
promotes the same value (question 3). For example, we can argue that Create new
cars also realizes the goal Generate traffic, which gives us a counterargument to
the original argument – to generate traffic by simply keeping the cars that disappear off
the screen and have them wrap around to the other side of the screen – that also follows
PRAS.

In argumentation, counterarguments are said to attack the original arguments (and some-
times vice versa). In the work of Atkinson et al. [ABC07], arguments and their attacks
are captured as an argumentation framework of arguments and attack relations as in-
troduced by Dung [Dun95]2. Figure 4.3 shows an argumentation framework with three
arguments from the above example: the argument for Keep same cars (A1), the argu-
ment for Create new cars (A3), and the argument that Keep same cars demotes the
value Realistic simulation (A2). The two alternative PRAS instantiations are A1
and A3. These arguments mutually attack each other, as Keep same cars and Create
new cars are considered to be mutually exclusive. Argument A2 attacks A1, as it points
to a negative side-effect of Keep same cars.

A3

A1 A2

Figure 4.3: Example argumentation framework.

Given an argumentation framework, the acceptability of arguments can be determined
according to the appropriate argumentation semantics. The intuition is that an argument
is acceptable if it is undefeated, that is, any argument that attacks it, is itself defeated. In
the argumentation framework in Figure 4.3, argument A2 is undefeated because it has
no attackers. This makes A1 defeated, because one of its attackers, A2, is undefeated.
A3 is then also undefeated, since its only attacker, A1, is defeated by A2. Thus, the set
of undefeated (justified) arguments given the argumentation framework in Figure 4.3 is
{A2, A3}, corresponding to arguments for Realistic simulation and Create new
cars.

Practical Argumentation and Goal Modeling

Practical reasoning in the PRAS framework as described above provides a formal frame-
work for defeasible reasoning about goals and actions that adheres to the acceptability

2Full definitions of Dung’s [Dun95] frameworks and semantics will be given in section 4.3. In this
section, we will briefly discuss the intuitions behind these semantics.

66 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

semantics of Dung [Dun95] and its various extensions [AC02, Mod09]. The usefulness
of PRAS for the analysis of practical reasoning situations has been shown in different
areas such as e-democracy [CA09], law [ABC05], planning [MGABCM13] and choos-
ing between safety critical actions [TMA+12]. In this chapter, we aim at capturing the
stakeholder’s discussions as formal argumentation based on PRAS to decide whether
intentional elements and their relationships are shown in the resulting goal model. This
give a rationalization to the elements of the goal model in terms of underlying argu-
ments, and furthermore, it allows one to understand why certain other elements have
been rejected.

Argumentation schemes and their associated critical questions are very well suited for
modeling discussions about a goal model: as Murukannaiah et al. [MKTS15a] have
shown, they can guide users in systematically deriving conclusions and making assump-
tions explicit. This can also be seen from the obvious similaries between PRAS (actions,
goals, values) and GRL (tasks, goals, softgoals) in the example above.

However, there are also some differences between PRAS and GRL. Not all elements
and relationships of GRL fit into PRAS. For instance, PRAS does not have a notion of
“resource”, and many of the relationships of GRL do not occur in PRAS. Furthermore,
it is not directly clear whether the critical questions as proposed by Atkinson actually
apply to GRL. Therefore, we develop our own set of argument schemes and critical
questions in the next section by analyzing transcripts of discussions about the traffic
simulator.

4.3 Argument Schemes for Goal Modeling

In this section, we develop a set of argument schemes for goal modeling and associated
critical questions. We start from an initial list that we derive from PRAS, containing ar-
gument schemes and critical questions that are specific to elements and relationships of
GRL. We then refine this list incrementally by annotating transcripts, meaning we iden-
tify and count instantiations of arguments schemes. If we find new argument schemes
or critical questions, we add them to the list. If some of them do not occur at all, we
remove them from the list. We then manually construct goal models from the arguments
and counter arguments we find in the transcripts, and add traceability links between the
goal model and underlying arguments. An example is shown in Figure 4.4, which is the
same as the example in Figure 4.2, but now including tracability links to underlying ar-
guments. A red dot indicates the underlying argument is rejected, and a green dot means
the underlying argument is accepted.

The final list of argument schemes and critical questions that we end up with after our
analysis is shown in Table 4.1. The initial list of argument schemes, i.e., those we
start with before annotating the transcripts, consists of AS1-AS4, AS6-AS9 (Table 4.1),
and their corresponding critical questions. The first four argument schemes (AS0-AS4)
are arguments for an element of a goal model, the next seven (AS5-AS11) are about
relationships, the next two (AS12-AS13) are about intentional elements in general, and
the last is (Att) is a generic counterargument for any type of argument that has been put
forward.

We found that answering critical questions can have varying effects on the model, and
for each critical question, the right column in Table 4.1 shows the effect of answering the

4.3 Argument Schemes for Goal Modeling 67

critical questions affirmatively. Answering a critical questions can create an argument
disabling the corresponding GRL element of the attacked argument scheme (DISABLE);
it can create an argument introducing a new GRL element (INTRO); it can replace the
GRL element corresponding to the original argument (REPLACE), or it can simply at-
tack an argument directly (ATTACK).

In the first subsection of this section, we provide details of the transcript annotation
process with concrete examples (see Appendix B for transcript excerpts), after which
we analyze our results in the second subsection.

Argument scheme Critical Questions Effect
AS0 Actor a is relevant CQ0 Is the actor relevant? DISABLE
AS1 Actor a has resource R CQ1 Is the resource available? DISABLE
AS2 Actor a can perform task T CQ2 Is the task possible? DISABLE
AS3 Actor a has goal G CQ3 Can the desired goal be realized? DISABLE
AS4 Actor a has softgoal S CQ4 Is the softgoal a legitimate soft-

goal?
DISABLE

AS5 Goal G decomposes into tasks
T1, . . . ,Tn

CQ5a Does the goal decompose into the
tasks?

DISABLE

CQ5b Does the goal decompose into any
other tasks?

REPLACE

AS6 Task T contributes to softgoal S CQ6a Does the task contribute to the
softgoal?

DISABLE

CQ6b Are there alternative ways of con-
tributing to the same softgoal?

INTRO

CQ6c Does the task have a side ef-
fect which contribute negatively to
some other softgoal?

INTRO

CQ6d Does the task contribute to some
other softgoal?

INTRO

AS7 Goal G contributes to softgoal S CQ7a Does the goal contribute to the
softgoal?

DISABLE

CQ7b Does the goal contribute to some
other softgoal?

INTRO

AS8 Resource R contributes to task T CQ8 Is the resource required in order to
perform the task?

DISABLE

AS9 Actor a depends on actor b CQ9 Does the actor depend on any ac-
tors?

INTRO

AS10 Task T1 decomposes into tasks
T2, . . . ,Tn

CQ10a Does the task decompose into
other tasks?

REPLACE

CQ10b Is the decomposition type correct?
(AND/OR/XOR)

REPLACE

AS11 Task T contributes negatively to
softgoal S

CQ11 Does the task contribute nega-
tively to the softgoal?

DISABLE

AS12 Element IE is relevant CQ12 Is the element relevant/useful? DISABLE
AS13 Element IE has name n CQ13 Is the name clear/unambiguous? REPLACE
- - Att Generic counterargument ATTACK

Table 4.1: List of argument schemes (AS0-AS13, left column), critical questions (CQ0-CQ13,
middle column), and the effect of answering them (right column).

68 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

4.3.1 Details experiment

The transcripts we used are created as part of two master theses on improving design
reasoning [Sch16, Riz16].

Subjects The subjects for the case study are three teams of Master students from the
University of Utrecht, following a Software Architecture course. Two teams consist of
three students, and one team consists of two students.

Experimental Setup The assignment used for the experiments is to design a traffic sim-
ulator. Participants were asked to use a think-aloud method during the design session.
The assignment was slightly adjusted to include several viewpoints as end products in
order to conform to the course material [BCK12]. The full problem descriptions can be
found in Appendix A of this thesis. All groups were instructed to apply the functional
architecture method, focusing on developing the context, the functional, and the infor-
mational viewpoints of the traffic simulator software. The students had two hours for the
tasks, and the transcripts document the entire discussion. The details of the transcripts
are shown in Table 4.2.

transcript t1 transcript t2 transcript t3
participants 2 3 3
duration 1h34m52s 1h13m39s 1h17m20s

Table 4.2: Number of participants and duration of the transcripts.

Annotation Method We started with an initial list of 8 argument schemes and 18 crit-
ical questions that we derived from PRAS (AS1-AS4, AS6-AS9 of Table 4.1). We an-
notated transcripts with the arguments and critical questions from this list. If we found
arguments or critical questions that did not appear in the original list, we added them
and counted them as well. Argument schemes that did not appear were removed from
the list, but critical questions were not removed (see discussion in Section 4.3.2). Most
of the occurrences were not literally found back, but had to be inferred from the context.
This can be seen in the various examples we will discuss.

It is generally known in the argumentation literature that it can be very difficult to iden-
tify arguments in natural language texts [WRM08]. Arguments are often imprecise, lack
conclusion, and may be supported by non verbal communication that is not captured in
the transcripts. However, there is hardly any research on on argument extraction in the
requirement engineering domains, so despite this potential weakness in our approach,
we believe it nevertheless is at least useful as something that others can build further on
(see Section 4.6.2).

Results All original transcripts, annotations, and models are available on the Github
page of this thesis:

http://www.github.com/marcvanzee/RationalArchitecture

http://www.github.com/marcvanzee/RationalArchitecture

4.3 Argument Schemes for Goal Modeling 69

Figure 4.4: The GRL model manually constructed from transcript t1. Green dots indicate ac-
cepted underlying arguments, red dots indicate rejected underlying arguments. Elements and
relationships with no dot have been inferred by us.

in the folder “Ch4 transcript analysis”. We also provide excerpts of the annotation in
Appendix B, and most of the examples we use in this chapter come from the transcripts.

We found a total of 159 instantiations of the argument schemes AS0-AS11 in the tran-
scripts. The most used argument scheme was AS2: “Actor A has task T ”, but each ar-
gument scheme has been found back in the transcripts at least twice (Table 4.3). A large
portion (about 60%) of the argument schemes we found involved discussions around
tasks of the information system (AS2, AS10).

We annotated 41 applications of critical questions. Many critical questions (about 55%)
involved clarifying the name of an element, or discussing the relevance of it (CQ12,
CQ13).

For each transcript, we manually created a GRL model from the argument schemes and
critical questions we found in them, in order to verify whether the arguments put for-
ward by the participants were sufficiently informative. An example of such a model is
shown in Figure 4.4. We added green and red dots to various elements and relationships
in the figure. A green dot indicates there is an underlying argument for the element that
is accepted, while a red dot indicates a rejected underlying argument. Note that if the un-
derlying argument is rejected, the corresponding GRL element has been disabled. Some

70 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

Scheme/Question t1 t2 t3 total
AS0 Actor 2 2 5 9
AS1 Resource 2 4 5 11
AS2 Task/action 20 21 17 58
AS3 Goal 0 2 2 4
AS4 Softgoal 3 4 2 9
AS5 Goal decomposes into tasks 4 0 4 8
AS6 Task contributes to softgoal 6 2 0 8
AS7 Goal contributes to softgoal 0 1 1 2
AS8 Resource contributes to task 0 4 3 7
AS9 Actor depends on actor 0 1 3 4
AS10 Task decomposes into tasks 11 14 11 36
AS11 Task contributes negatively to softgoal 2 1 0 3
CQ2 Task is possible? 2 2 1 5
CQ5a Does the goal decompose into the tasks? 0 1 0 1
CQ5b Goes decomposes into other tasks? 1 0 0 1
CQ6b Task has negative side effects? 2 0 0 2
CQ10a Task decompose into other tasks? 1 2 0 3
CQ10b Decomposition type correct? 1 0 1 2
CQ12 Is the element relevant/useful? 2 3 2 7
CQ13 Is the name clear/unambiguous? 3 10 3 16
- Generic counterargument 0 2 2 4

TOTAL 69 80 69 222

Table 4.3: Number of occurrences of argument schemes and critical questions in the transcripts.
Critical questions not appearing in this table were not found back in the transcripts.

elements do not have a corresponding green or red dot. In that case, we have inferred
the elements from the discussion, but we could not explicitly find back arguments for it.

We found that answering a critical questions can have four different effects on the orig-
inal argument and the corresponding GRL element:

• INTRO: Introduce a new goal element or relationship with a corresponding argu-
ment. This operation does not attack the original argument of the critical question,
but rather creates a new argument. For instance, suppose argument scheme AS5 is
instantiated as follows:: “Goal Generate cars OR-decomposes into tasks Keep
same cars and Create new cars”. Suppose now the critical question CQ5b:
“Does the goal Agreeable meeting dates decompose into other tasks?” is an-
swered with “yes, namely Choose randomly”. This results in a new instanti-
ation of AS5, namely: “Goal Generate cars OR-decomposes into tasks Keep
same cars, Create new cars, and Choose randomly. As a result, the goal
model will contain the corresponding task Choose randomly, as well as an OR-
decomposition relation from the goal Generate cars to that task.

• DISABLE: Disable the element or relationship of the argument scheme to which
the critical questions pertains. This operation does not create a new argument,
but only disables (i.e., attacks) the original one. For instance, suppose argument
scheme AS0 is instantiated with: “Actor Teacher is relevant”. This argument can
be attack with critical question CQ0: “Actor Teacher is not relevant”. As a result,

4.3 Argument Schemes for Goal Modeling 71

the argument for the actor is attack, and actor Teacher is disabled in the goal
model.

• REPLACE: Replace the element of the argument scheme with a new element. This
operation both introduces a new argument and attacks the original one. For in-
stance, suppose argument scheme AS2 is instantiated with: “Actor Student can
perform task Choose a pattern preference. This argument can be attacked
with critical question CQ13: “The task Choose a pattern preference is un-
clear, it should be Choose a road pattern”. This results in replacing the orig-
inal argument with the new argument “Actor Student can perform task Choose
a road pattern. In the goal model, the description of the task should change
accordingly.

• ATTACK: Attack any argument with an argument that cannot be classified as a
critical question. For instance, suppose argument scheme AS0 is instantiated with
“Actor Teacher is relevant”. Suppose this argument is attacked with critical ques-
tion CQ0: “Actor Teacher is not relevant”, because she does not create the sys-
tem. However, this critical question may in turn be attacked again, if new evidence
comes up. For instance, it may turn out that the teacher will work on developing
the application herself. In this case, the generic counter argument “Actor Teacher
is relevant, because does develop for the application” attack the argument “Actor
Teacher is not relevant”. As a result, the original argument “Actor Teacher is
relevant” is accepted again, and as a result is shown in the goal model.

In Section 4.4 we provide examples we found in the transcripts for all of these four
effects.

4.3.2 Analysis

Analysis of the Argument Schemes Recall that our initial list of argument schemes
consists of AS1-AS4, AS6-AS9 (Table 4.1). Therefore, the difference between the initial
list of argument schemes and those found back in the transcripts is quite small. We found
it surprising that we were able to find back all the schemes in the transcript at least
twice, even more since the topic of discussion was not goal models, but more generally
the architecture of an information system. This gives us an indication that it is possible
to capture (parts of the) arguments used in those type of discussions using argument
schemes.

We observed that our initial list is rather limited, which is a consequence of the fact
that it is derived from PRAS. Since PRAS only considers very specific types of relation-
ships, we are not able to capture many other relationships existing in GRL. GRL has
four types of intentional elements (softgoal, goal, task, resource) and four types of re-
lationships (positive contribution, negative contribution3, dependency, decomposition),
allowing theoretically 43 = 64 different types of argument schemes, of which we cur-
rently only consider 11. Our analysis however shows that many of these schemes are
not often used, and thus, gives us some confidence in the resulting list. However, if

3In fact, a contribution can be any integer in the domain [-100,100], but for the sake of simplicity we
only consider two kinds of contributions here.

72 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

needed, additional argument schemes and critical questions can be added, and our list is
not meant to be exhaustive.

Analysis of the Critical Questions The difference between the initial list of critical
questions and those we found back in the transcripts is much larger than for the critical
questions. We found few of the critical questions we initially proposed. However, this
does not mean that they were not implicitly used in the minds of the participants. If a
participants for instance forms an argument for a contribution from a task to a softgoal,
it may very well be that she was asking herself the question “Does the task contribute
to some other softgoal?”. However, many of these critical questions are not mentioned
explicitly. If we assume this explanation is at least partially correct, then this would
mean that critical questions may still play a role when formalizing the discussions lead-
ing up to a goal model, and it would be limiting to leave them out of our framework. In
the context of tool support, we believe that having these critical questions available may
stimulate discussions.

4.4 Examples

We now discuss various instantiations of argument schemes and the result of answering
critical questions in more detail. For each example we provide transcript excerpts, a
visualization of the arguments, and the corresponding goal model elements. We provide
a legend for our visualization notation in Figure 4.5.

Example 1: Disable task Traffic light

The transcript excerpt of this example is shown in Table B.2 in the appendix and comes
from transcript t1. In this example, participants are summing up functionality of the
traffic simulator, which are tasks that the student can perform in the simulator. All these
task can be formalized and are instantiations of argument scheme AS2: “Actor Student
has tasks T ”, where T ∈ {Save map, Open map, Add intersection, Remove intersection,
Add road, Add traffic light}”.

Once all these tasks are summed up, participant P1 notes that the problem description
states that all intersections in the traffic simulator have traffic lights, so the task Add
traffic light is not useful. We formalized this using the critical question CQ12: “Is
task Add traffic light useful/relevant?”.

We visualize some of the argument schemes, critical questions, and traceability links
with the GRL model in Figure 4.6. On the left side of the image, we see three of
the instantiated argument schemes AS2. The bottom one, “Actor Student has task
Add traffic light”, is attacked by another argument generated from applying critical
question CQ12: “Add traffic light is useless (All intersections have traffic lights).
As a result, the corresponding GRL task is disabled. The other two tasks are enabled
and have green traceability links.

4.4 Examples 73

A1

A2
Argument A1 (accepted) attacks

argument A2 (rejected)

Traceability link from accepted
argument to enabled GRL element

Traceability link from rejected
argument to disabled GRL element

A1

A2

Argument A2 is the result of answering
critical question CQ of argument A1CQ

Figure 4.5: Legend of the various elements and relationships we use for the examples in this
article.

Example 2: Clarify task Road pattern

The transcript excerpt of the second example is shown in Table B.1 in Appendix B and
comes from transcript t3. It consists of a number of clarification steps, resulting in the
task Choose a road pattern.

The formalized argument schemes and critical questions are shown in Figure 4.7. The
discussion starts with the first instantiation of argument scheme AS2: “Actor Student
has task Create road”. This argument is then challenged with critical question CQ12:
“Is the task Create road clear?”. Answering this question results in a new instantiation
of argument scheme AS2: “Actor Student has task Choose a pattern”. This process
is repeated two more times, resulting in the final argument “Actor Student has task
Choose a road pattern”. This final argument is unattacked and has a corresponding
intentional element (right image).

What is clearly shown in this example is that a clarifying argument attacks all arguments
previously used to describe the element. For instance, the final argument on the bottom
of Figure 4.7 attacks all three other arguments for a name of the element. If this was
not the case, then it may occur that a previous argument is reinstatiated, meaning that
it becomes accepted again because the argument attacking it is itself attacked. Sup-
pose for instance the bottom argument “Actor Student has task Choose a pattern
preference” did not attack the second argument: “Action Student has task Choose

74 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

(AS2) Actor Student has task Save
map

(AS2) Actor Student has task Add
road

(AS2) Actor Student has task Add
traffic light

Add traffic light is useless (All in-
tersections have traffic lights)

CQ12

Figure 4.6: Argument schemes and critical questions (left), GRL model (right), and traceability
link (dotted lines) for the traffic light example.

(AS2) Actor Student has task Cre-
ate road

(AS2) Actor Student has task
Choose a pattern

(AS2) Actor Student has task
Choose a pattern preference

(AS2) Actor Student has task
Choose a road pattern

CQ13

CQ13

CQ13

Figure 4.7: Argument schemes and critical questions (left), GRL model (right), and traceability
link (dotted line) of the road pattern example.

a pattern”. In that case, this argument would be reinstated, because its only attacker
“Actor Student has task Choose a pattern preference” is itself defeated by the
bottom argument.

4.4 Examples 75

Example 3: Decompose goal Simulate

The transcript excerpt of this example is shown in Table B.3 in the appendix and comes
from transcript t3. It consists of a discussion about the type of decomposition relation-
ship for the goal Simulate.

(AS3) Actor System has goal Sim-
ulate

(AS2) Actor System has task Dy-
namic simulation

(AS2) Actor System has task Static
simulation

(AS5) Goal Simulate AND-
decomposes into Static simulation
and Dynamic simulation

(AS5) Goal Simulate OR-
decomposes into Static simulation
and Dynamic simulation

CQ10b

Figure 4.8: Argument schemes and critical questions (left), GRL model (right), and traceability
link (dotted line) of the goal decomposition example.

The visualization of this discussion is shown in Figure 4.8. Each GRL element on the
right has a corresponding argument on the left. Moreover, the original argument for
an AND-decomposition is attacked by the argument for the OR-decomposition, and the
new argument is linked to the decomposition relation in the GRL model.

Example 4: Reinstate actor Development team

The transcript excerpt of this example is shown in Table B.4 in the appendix and comes
from transcript t3. It consists of two parts: first participant P1 puts forth the suggestion to
include actor Development team in the model. This is, then, questioned by participant
P2, who argues that the professor will develop the software, so there won’t be any de-
velopment team. However, in the second part, participant P2 argue that the development
team should be considered, since the professor does not develop the software.

We formalize this using a generic counterargument, attacking the critical question. The
first part of the discussion is shown in Figure 4.9. We formalize the first statement as an
instantiation of argument scheme AS0: “Actor development team is relevant”. This
argument is, then, attacked by answering critical question CQ0: “Is actor development
team relevant? with No. This results in two arguments, AS0 and CQ0, where CQ0
attacks AS0. This is shown in Figure 4.9, left image.

76 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

(AS0) Development team is rele-
vant

Development team is not rele-
vant (The professor makes the soft-
ware)

CQ0

Figure 4.9: Argument schemes and critical questions (left), GRL model (right), and traceability
link (dotted line) of a discussion about the relevance of actor Development team.

(AS0) Development team is rele-
vant

Development team is not rele-
vant (The professor makes the soft-
ware)

The professor doesn’t develop the
software

CQ0

Att

Figure 4.10: Argument schemes and critical questions (left), GRL model (right), and traceability
link (dotted line) of a discussion about the relevance of actor Development team.

Figure 4.10 shows the situation after the counter argument has been put forward. The
argument “Actor Professor doesn’t develop the software” now attacks the argument
“Development team is not relevant (The professor makes the software)”, which in turn
attacks the original argument “Development team is relevant”. As a result, the first
argument is reinstated, which causes the actor in the GRL model to be enabled again.

4.5 RationalGRL: the logical framework

In the previous section we developed a list of critical questions and argument schemes
by analyzing transcripts of discussions about the development of a traffic simulator. The
resulting list is shown in Table 4.1. We also discussed various examples of applications
of the different critical questions and all four different effects (right column of Table 4.1):
INTRO, DISABLE, REPLACE, and ATTACK.

The examples and corresponding visualizations of the previous section provide some
insight on how to formalize argument schemes, critical questions, and their relationship

4.5 RationalGRL: the logical framework 77

with goal models. However, if we are to implement our framework in a tool, we require
a more precise formalization of these concepts. Motivated by our approach in Chapter
2 we choose to use formal logic to specify this. This is also a good fit with formal
argumentation, which has flourished in the past decades, leading to a large number of
different semantics that we can choose from.

The rest of this section is as follows: In the first subsection, we develop a formal lan-
guage to specify a GRL model. This language consists of atomic sentences. In the
second subsection, we develop our notion of an argument: an argument is simply a set
of atoms from our language. In the third subsection, we develop algorithms for all the
argument schemes and critical questions.

4.5.1 Logical Language for RationalGRL

We define our language as a set of atoms, that is, grounded formulas (without variables)
with no logical connectives or negation.

Definition 4.1 (GRL Atoms). Let P be a set of sentences representing names for GRL
elements. The set of GRL atoms At is defined as follows:

At = {actor(i),so f tgoal(i),goal(i), task(i),resource(i),decomp(k, i,J,dtype),
dep(k, i, j),contr(k, i, j,ctype),has(i, j),disabled(i),name(i, p)},

where

• {i, j,k}∪ J ⊆ N

• p ∈ P

• dtype ∈ {and,or,xor}

• ctype ∈ {+,−}

The non-negative integers associates with each element and relation are identifiers. We
thus choose to identify each element and relationship in a GRL model with an identifier.
This allows us to change the name of an element while still being able to make dif-
ferent statements about this element, for instance by applying critical question CQ12a
(clarification, see the example “Clarify task Road pattern” above).

We now briefly explain each atom in more detail.

• actor(i): Identifier i is an actor.

• so f tgoal(i): Identifier i is a softgoal.

• goal(i): Identifier i is a goal.

• task(i): Identifier i is a task.

• resource(i): Identifier i is a resource.

• decomp(k, i,J,dtype): Identifier k is a dtype-decomposition (and/or/xor) from
the element corresponding to identifier i to the set of elements corresponding to
identifiers J.

78 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

• dep(k, i, j): Identifier k is a dependency link from the element corresponding to
identifier i to the element corresponding to identifier j.

• contr(k, i, j,ctype): Identifier k is a ctype-contribution (+/-) from the element cor-
responding to identifier i to the element corresponding to identifier j.

• has(i, j): Identifier i (which is an actor) has the element corresponding to identifier
j.

• disabled(i): The element or relationships corresponding to identifier i is disabled.

• name(i, p): The name of the element corresponding to identifier i is p.

Remark 2. From these descriptions one can observe that many of the atoms come with
a number of assumptions and dependencies. For instance, if has(i, j) is true, then i is an
actor and j is an element. We could formalize this as follows:

has(i, j)→ (actor(i)∧ (so f tgoal(j)∨goal(j)∨ task(i)∨ resource(j))).

It would be possible to enumerate all such properties in order to correctly specify a GRL
model. One could then formally verify whether a set of atoms violates these constraints.
If not, it is a “valid” representation of a GRL model. Since the focus of this chapter is
not on a logical analysis, but rather on developing a framework for empirical data, we
leave such a formal analysis for future work (see Section 4.6.2).

Using this formalization, it is rather straightforward to specify a GRL model. An exam-
ple of the specification of the GRL model in Figure 4.8 is shown in Table 4.4. The spec-
ification has been written in logic programming style. In this chapter we do not make
use of any logic programming techniques but this would be interesting future work (see
Section 4.6.2). A more elaborate example of a specification is shown in Appendix C,
showing a complete specification of the traffic simulator GRL model in Figure 4.2.

goal(0).
task(1).
task(2).
name(0,simulate).
name(1,static simulation).
name(2,dynamic simulation).
decomp(3,0,[1,2],or).

Table 4.4: Specification of the GRL model in Figure 4.8

4.5.2 Formal argumentation semantics

In the previous subsection we introduced an atomic language to specify a GRL model.
In this subsection we give a formal definition of an argument, which is simply a set of
atoms from our language. We introduce Dung’s acceptability semantics as well, which
allows us to determine sets of acceptable arguments.

Definition 4.2 (Argument). An argument A⊆ Att is a set of atoms from Att.

4.5 RationalGRL: the logical framework 79

This simple definition allows us to form arguments about (parts of) a GRL model. For
instance,

{goal(0),name(0,development team)},
is an argument. We next introduce an argumentation framework, which is a set of argu-
ments an attack relations between arguments.

Definition 4.3 (Argumentation framework [Dun95]). An argumentation framework AF =
(Args,Att) consists of a set of arguments Args and an attack relationship Att : Args×
Args, where (A1,A2)∈ Att means that argument A1 ∈ Args attacks arguments A2 ∈ Args.

Now that we have defined arguments and their attacks, we are going to define a semantics
to determine which arguments are acceptable. The following notions are preliminary to
this.

Definition 4.4 (Attack, conflict-freeness, defense, and admissibility [Dun95]). Suppose
an argumentation framework AF = (Arg,Att), two sets of arguments S∪S′ ⊆ Arg, and
some argument A ∈ Arg. We say that

• S attacks A if some argument in S attacks A,

• S attacks S′ if some argument in S attacks some argument in S′,

• S is conflict-free if it does not attack itself,

• S defends A if S attacks each attack against A.

• S is admissible if S is conflict-free and defends each argument in it.

A1 A2 A3 A4 A5

Figure 4.11: Example argumentation framework.

Let us explain these definitions using the example argumentation framework in Fig-
ure 4.11. We say that the set {A1,A4,A5} attacks argument A2, because A1 attacks A2.
However, {A1,A4,A5} is not conflict-free, because A4 attacks A5, so this set of argu-
ments attacks itself. If we remove A5 from this set, then it is conflict-free. In total, all
the following sets are conflict-free in Figure 4.11:

{A1,A3},{A1,A4},{A2,A4},{A1},{A2},{A3},{A4}, /0.

However, not all of these sets are admissible. For instance, the set {A2,A4} is not admis-
sible, because A1 attacks this set, but the set does not defend itself against this attack.
The set {A1,A3} is admissible, because its only attacker, A4 is attacked by A3.

There are a large number of different semantics using these notions to determine which
arguments are acceptable, such as the grounded, the preferred, the stable, and the com-
plete semantics. However, in this chapter our argumentation frameworks are very sim-
ple, in the sense that they do not introduce cycles. In future work, we aim to extend this
by using preferences (see open issues in Section 4.6.2). An advantage of our current
approach is that all semantics coincide when there are no cycles, which simplifies our
case. We use the preferred semantics here, but we could equivalently have chosen any
other version.

80 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

Definition 4.5 (Preferred semantics [Dun95]). Suppose an argumentation framework
AF = (Arg,Att). A set of arguments S⊆ Arg is a preferred extension if and only if

• S is an admissible set of argument,

• For each admissible set of arguments T ⊆ A: S 6⊂ T .

In our example in Figure 4.11, the preferred extensions are {A1,A3} and {A1,A4}.

4.5.3 Algorithms for argument schemes and critical questions

Let us briefly review what we have done so far. Up until now we have achieved the
following:

• We (informally) developed a set of argument schemes and critical questions in
Section 4.3, by annotating transcripts.

• We developed a visual notation to illustrate some argument schemes and critical
questions in Section 4.4.

• We proposed a logical language consisting of atomic sentences to describe a GRL
model in Section 4.5.1.

• We formalized an “argument” as a set of atoms from our language, and we in-
troduced argumentation semantics to compute sets of accepted arguments in Sec-
tion 4.5.2.

We see that we are becoming increasingly more formal in each step of the progress.
What we haven’t formalized properly yet are the argument schemes and critical ques-
tions, which is what we turn to now.

Both the application of an argument schemes and the answering of critical questions are
procedural or dialectic in nature. Therefore, a natural choice of formalizing them seems
to develop procedures, or algorithms for them, which is what we do here.

In the following algorithms, we assume the following global variables:

Definition 4.6 (Global variables). The following variables are intended to have a global
scope and have a static value, meaning the lifetime of the variable extends across the
entire run of the program.

• id: the current highest identifier of the elements. This variable is increased for
each new element that is added.

• Args: contains the set of all arguments.

• Att: contains the set of all attack relations.

4.5 RationalGRL: the logical framework 81

Algorithm 4.1 Applying AS0: Actor a is relevant
1: procedure AS0(a)
2: id← id +1
3: A←{actor(id),name(id,a)}
4: Args← Args∪A
5: end procedure

Algorithms for argument schemes

The algorithms for the argument schemes are very simple, because they simply consist
of forming a new argument and adding it to the set of arguments. No attack relations are
introduced.

Algortihm 4.1 for argument scheme AS0: The algorithm takes one argument, namely the
name of the actor a. On line 2 of the algorithm, the global variable id is increased by one.
This ensures that each new argument has a unique identifier. On line 3, the argument
for the actor is formed, consisting of two statements, stating respectively that id is an
actor, and that the name of this actor is a. Finally, on line 4 this argument is added to the
global set of arguments Args. In Figure 4.10, the application of the argument scheme
AS0(Development team), results in one argument:

Args = {{actor(0),name(0,Development team)}}.

Algorithm 4.2 Applying AS1: Actor aid has resource n
1: procedure AS1(aid,n)
2: id← id +1
3: A←{resource(id),name(id,n),has(aid, id)}
4: Args← Args∪A
5: end procedure

Algorithm 4.2 for argument scheme AS1: This argument scheme takes two arguments,
the identifier aid of the actor and the resource name n. The algorithm is similar to the
previous one, with the difference that the newly added argument contains the statement
has(aid, id) as well, meaning that the actor with id aid has element id (which is a re-
source). As an example, let us formalize the argument corresponding to resource Exter-
nal library of actor Traffic tycoon in Figure 4.4. First, we assume some id is associated
with the actor:

{actor(0),name(0, tra f f ic tycoon)}.

Then we can formalize the argument for the resource as follows:

{resource(1),name(1,external library),has(0,1)}.

Argument scheme AS1 to AS4 are all very similar, in the sense that they all assert that
some element belongs to an actor. Therefore, we only provide the algorithm for AS1
and we assume the reader can easily construct the remaining algorithms AS2-AS4.

Algorithm 4.3 for argument scheme AS5: The procedure in Algorithm 4.3 takes three
arguments: gid is the identifier of goal G, T = (T1, . . . ,Tn) is a list of decomposing

82 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

Algorithm 4.3 Applying AS5: Goal gid decomposes into tasks T1, . . . ,Tn

1: procedure AS5(gid,{T1, . . . ,Tn}, type)
2: Tid = /0

3: for Ti in {T1, . . . ,Tn} do
4: if ∃A∈Args{task(tid),name(tid,Ti)} ⊆ A then
5: Tid ← Tid ∪{tid}
6: else
7: id← id +1
8: A←{task(id),name(id,Ti)}
9: Args← Args∪A

10: Tid ← Tid ∪{id}
11: end if
12: end for
13: id← id +1
14: A←{decomp(id,gid,Tid, type)}
15: Args← Args∪A
16: end procedure

task names, and type ∈ {and,or,xor} is the decomposition type. The difficulty of this
algorithm is that each of the tasks are stated in natural language, and it is not directly
clear whether these tasks are already in the GRL model or not. Therefore, we have to
check for each tasks whether it already exists, and if not, we have to create a new task.
On line 2, the set Tid is initialized, which will contain the ids of the tasks T1, . . . ,Tn
to decompose into. In the for loop, the if statement on line 4 checks whether some
argument already exists for the current task Ti, and if so, it simply adds the identifier of
the task (tid) to the set of task identifiers Tid . Otherwise (line 6), a new task is created
and the new identifier id is added to the set of task identifiers. After the for loop on
line 13, an argument for the decomposition link itself is constructed, and it is added to
the set of arguments Args.

Let us explain this algorithm with the XOR-decomposition of goal Generate cars of
Figure 4.4. Suppose the following arguments are constructed already:

• {goal(0),name(0,generate cars)},

• {task(1),name(1,keep same cars}.

Suppose furthermore that someone wants to put forward the argument that goal Generate
cars XOR-decomposes into tasks Keep same cars and Create news cars. For-
mally: AS5(0,{generate cars,keep same cars},xor). The algorithm will first set Tid =
/0, and then iterate over the two task names. For the first task generate cars, there does
not exist an argument {task(tid),name(tid,generate cars)} yet, so a new argument is
created. Suppose the following argument is created: {task(2),name(2,generate cars)}.
After this, 2 is added to Tid . For the second task an argument exists already, namely
{task(1),name(1,keep same cars)}, so 1 is simply added to Tid . After the for loop, we
have Tid = {1,2}. Next, the decomposition argument is created, which is {decomp(3,0,{1,2},xor)}.
This argument is added to Args and the algorithm terminates.

Algorithm 4.4 for argument scheme AS6: The procedure in Algorithm 4.4 takes two
arguments: tid is the identifier of task T , and s is the softgoal name that is contributed to.

4.5 RationalGRL: the logical framework 83

Algorithm 4.4 Applying AS6: Task tid contributes to softgoal s
1: procedure AS6(tid,s)
2: if ∃A∈Args{so f tgoal(i),name(i,s)} ⊆ A then
3: sid ← i
4: else
5: id← id +1
6: A←{so f tgoal(id),name(id, t)}
7: Args← Args∪A
8: sid ← id
9: end if

10: id← id +1
11: A←{contr(id, tid,sid, pos)}
12: Args← Args∪A
13: end procedure

The idea behind this algorithm is very similar to the previous one. First, the if statements
check whether the softgoal exists already, and if not, an argument is added for it. This
ensures that all softgoals have corresponding arguments. After the if statement, the
argument for the contribution link is created and it is added to the set of arguments Args.

Let us again illustrate this with a simple example from Figure 4.4. Suppose the follow-
ing argument exists already: {task(0),name(0,keep same cars}, and suppose someone
would like to add an argument that the task Keep same cars contributes positively to
softgoal Dynamic simulation, i.e. AS6(0,dynamic simulation). The algorithm first
checks whether an argument already exists for the softgoal, and when it finds out it does
not exist, creates the argument {so f tgoal(1),name(1,dynamic simulation)} and adds
it to Args. Then, the argument for the contribution is added to Args as well, which is
{contr(2,0,1, pos)}.
Algorithms for argument schemes AS7-AS11: The algorithms for AS7 to AS11 all have
a very similar structure as Algorithm 4.4 and have therefore been omitted. Again, we
assume the reader can reconstruct them straightforwardly.

Algorithms for critical questions

We now develop algorithms for our critical questions. Recall that answering a critical
question can have four effects, and we discuss each of these effects separately.

Algorithm 4.5 Applying DISABLE: Element i is disabled
1: procedure DISABLE(i)
2: id← id +1
3: A←{disabled(i))}
4: Args← Args∪A
5: end procedure

Algorithm 4.5 (DISABLE) for critical questions CQ0-CQ5a, CQ6a, CQ7a, CQ8, CQ11,
and CQ12: The disable operation is very straightforward: It simply consists of adding
an argument stating the GRL element with identifier i is disabled. Let us reconsider the

84 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

example of Figure 4.9. This example consists of an instantiation of argument scheme
AS0, which is attacked by an argument that resulted from answering critical question.
The formalization of this scenario is shown in Figure 4.12. Interestingly, we see that the
DISABLE operation no longer leads to an attack between the two arguments. Instead,
the only thing that this operation does is adding another argument stating the element is
disabled.

(AS0)
{actor(0),name(0,dev team}

(DISABLE) {disabled(0)}

CQ0

Figure 4.12: Formalization of the arguments in Figure 4.9.

Algorithm 4.6 Answering CQ5b: “Does goal G decompose into any other tasks?” With:
“Yes, namey into tasks t1, . . . , tk”

1: procedure CQ5B(gid,{i1, . . . , in}, type,{t1, . . . , tk})
2: Tid = {i1, . . . , in}
3: for ti in {t1, . . . , tk} do
4: if ∃A∈Args{task(tid),name(tid, ti)} ⊆ A then
5: Tid ← Tid ∪{tid}
6: else
7: id← id +1
8: A←{task(id),name(id, ti)}
9: Args← Args∪A

10: Tid ← Tid ∪{id}
11: end if
12: end for
13: id← id +1
14: Anew = {decomp(id,gid,Tid, type)}
15: for A in {decomp(,gid, ,)} ⊆ A | A ∈ Args} do
16: Att← Att ∪{(Anew,A)}
17: end for
18: Args← Args∪{Anew}
19: end procedure

Algorithm 4.6 (REPLACE) for critical questions CQ5b: This algorithm is executed when
critical question CQ5b is answered, which is a critical question for argument scheme
AS5. Therefore, it assumes an argument for a goal decomposition already exists of the
following form (see Algorithm 4.3):

{decomp(d,gid,{i1, . . . , in}, type).

The goal of the algorithm is to generate a new argument of the form decomp(d,gid,{i1, . . . , i5}∪
{ j1, . . . , jk}, type), where { j1, . . . , jk} are the identifiers of the additional decomposing
tasks {t1, . . . , tk}.

4.5 RationalGRL: the logical framework 85

The algorithm task as input the goal identifier gid , the set of existing decomposing task
identifiers i1, . . . , in, the decomposition type, and the names of the new tasks t1, . . . , tk
that should be added to the decomposition. The first part of the algorithm is already
familiar: For each task name we check whether it already exists as an argument (line
4), and if it doesn’t (line 6) we add a new argument for it. After the for loop (line 13),
a new argument is created for the new decomposition relation (14). After this, the for
loop on line 15 ensures that the new argument attacks all previous arguments for this
decomposition (note that the variable “ ” means “do not care”). Only at the very end the
new argument is added (line 18), to ensure it does not attack itself after the for loop of
line 15-17.

An example of this algorithm is shown in Figure 4.13.4 Before the critical question is
applied, the following arguments have been put forward:

• {goal(0),name(0,show simulation)}

• {task(1),name(1,generate tra f f ic)}

• {task(2),name(2,compute lights)}

• {decomp(3,0,{1,2},and)}.

Next, Algorithm 4.6 is called as follows: CQ5b(0,{1,2},and,{show controls}). That
is, the existing decomposition is challenged by stating that goal show simulation not
only decomposes into generate tra f f ic and compute lights, but it also decomposes into
show controls. Since this task does not exist yet, it is created by the algorithm, which
also ensures the new argument for the decomposition link attacks the previous argument
for the decomposition link.

(AS3) {goal(0),
name(0,show sim}

(AS2) {task(1),
name(1,gen tra f f ic}

(AS2) {task(3),
name(2,show ctrls}

(AS2) {task(2),
name(2,comp lights}

{decomp(3,0,{1,2},and} {decomp(3,0,{1,2,3},and}

CQ5b

CQ5b

Figure 4.13: Example of applying critical question CQ5b (Algorithm 4.6)

Algorithms for critical questions CQ10a and CQ10b (REPLACE): These algorithms
have a very similar structure as Algorithm 4.6 and have therefore been omitted.

4Note that part of the arguments (the statements about actors) have been omitted from the figure for
readability.

86 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

Algorithm 4.7 Answering CQ13: “Is the name of element i clear?” With: “No, it should
be n”

1: procedure CQ13(i,n)
2: ArgsN←{A ∈ Args | name(i,x) ∈ A}
3: B← B′\{name(i,)} with B′ ∈ ArgsN
4: A← B∪{name(i,n)}
5: Args← Args∪{A}
6: for B in ArgsN do
7: Att← Att ∪{(A,B)}
8: end for
9: end procedure

Algorithms for critical question CQ13 (REPLACE): This algorithm is used to clari-
fy/change the name of an element. It takes two parameters: the element identifier i and
the new name n. The idea behind the algorithm is that we construct a new argument for
n from the previous arguments, and we only replace the name atom. We also have to
ensure that we attack all previous arguments for a name. On line 2, all arguments that
have been put forward for this element and contain name(i,x) are collected into the set
ArgsN. On line 3, some arguments B′ ∈ ArgsN minus the name statement is assigned
to B, and on line 4 B is joined with the new name statement and stored in A, which is
then added to the set of arguments Args. The for loop on lines 6-8 ensures all previous
arguments for names of the element are attacked by the new argument.

(AS0) {actor(0),name(0,student)}

(AS2) {task(1),name(1,create road),has(0,1)}

(AS2) {task(1),name(1,choose pattern),has(0,1)}

(AS2) {task(1),name(1, pattern pre f),has(0,1)}

(AS2) {task(1),name(1,road pattern),has(0,1)}

CQ13

CQ13

CQ13

Figure 4.14: Applying critical question CQ13 (Algorithm 4.7) to the example in Figure 4.7.

An example of the working of Algorithm 4.7 is shown in Figure 4.14. Let us consider
the last application of CQ13 (bottom argument). Before this application, the following
arguments have been put forward:

• A1: {actor(0),name(0,student)}

4.5 RationalGRL: the logical framework 87

• A2:{task(1),name(1,create road),has(0,1)}

• A3 {task(1),name(1,choose pattern),has(0,1)}

• A4:{task(1),name(1, pattern pre f),has(0,1)}

The algorithm is now called as follows: CQ13(1,road pattern), i.e., the new name of
the element should be road pattern. Let us briefly run through the algorithm. After
executing line 2 we obtain ArgsN = {A2,A3,A4}, since only those arguments contain
name(1,). Next, on line 3, B = {task(1),has(0,1)}, i.e., B is the general argument for
the task without the name statement. After line 4 we have

A = {task(1),has(0,1),name(1,road pattern),

which is added to Args and attacks arguments A2,A3, and A4.

Algorithms for critical questions CQ6b, CQ6c, CQ6d, CQ7b, and CQ9 (INTRO): The
introduction algorithms for the critical questions are all very similar to the INTRO algo-
rithms for argument schemes (Algorithm 4.2). They have therefore been omitted.

Algorithm 4.8 Generic counterargument to argument A
1: procedure ATTACK(A)
2: Anew = {}
3: Args← Args∪{Anew}
4: Att← Att ∪{(Anew,A)}
5: end procedure

Algorithm for Att (Generic counter argument: Applying a generic counter argument is
very simple, and simply results on an attack on the original argument. We illustrate this
by continuing our example from Figure 4.15 (Algorithm 4.1). The example is shown in
Figure 4.15, where we see that a generic counter argument simply attacks the argument
to disable the actor.

(AS0)
{actor(0),name(0,dev team}

(DISABLE) {disabled(0)}

(Att) {}

CQ0

Att

Figure 4.15: Formalization of the arguments in Figure 4.10.

4.5.4 Constructing GRL models

Constructing GRL models from the arguments is extremely simple: We simply compute
the extensions of the argumentation frameworks, and collect all atomic sentences in the

88 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

accepted arguments. This forms out GRL model. Let us briefly do so for the examples
of the previous subsection:

• Figure 4.12: Since there are no attacks between the arguments, all atomic sen-
tences are accepted. This results in the following specification:

actor(0).
name(0,dev_team).
disabled(0).

This again corresponds to the GRL model on the right-hand side of Figure 4.9.

• Figure 4.13: There is one rejected argument and five accepted ones. The resulting
specification is:

goal(0). name(0,show_simulation).
task(1). name(1,generate_traffic).
task(2). name(2,compute_lights).
task(3). name(3,show_controls).
decomp(3,0,{1,2,3},and).

• Figure 4.14: There are only two accepted arguments. The resulting specification
is:

actor(0). name(0, student).
task(1). name(1,road_pattern). has(0,1).

This corresponds to the right-hand GRL model of Figure 4.7.

• Figure 4.15. There are two accepted arguments, but the generic counterargument
does not contain any formulas. Therefore the resulting specification is:

actor(0).
name(0,dev_team).

This corresponds to the right-hand GRL model of Figure 4.10.

4.6 Discussion

4.6.1 Related work

The need for justifications of modeling choices plays an important role in different re-
quirements engineering methods using goal models. High-level goals are often under-
stood as reasons for representing lower-level goals (in other words, the need for low-
level goals is justified by having high-level goals) and other elements in a goal model
such as tasks and resources. Various refinements and decomposition techniques, often
used in requirements engineer (See [Van01] for an overview), can be seen as incorporat-
ing argumentation and justification, in that sub-goals could be understood as arguments
supporting parent goals. In that case, a refinement alternative is justified if there are no
conflicts between sub-goals (i.e., it is consistent), as few obstacles as possible sub-goals

4.6 Discussion 89

harm sub-goal achievement, there are no superfluous sub-goals (the refinement is min-
imal), and the achievement of sub-goals can be verified to lead to achieving the parent
goal (if refinement is formal [DvL96]). This interpretation is one of the founding ideas
of goal modeling. However, while this interpretation may seem satisfactory, argumen-
tation and justification processes differ from and are complementary to refinement in
several respects, such as limited possibilities for rationalization and lack of semantics
(see Jureta [JFS08] for more details).

There are several contributions that relate argumentation-based techniques with goal
modeling. The contribution most closely related to ours is the work by Jureta et al. [JFS08].
Jureta et al. propose “Goal Argumentation Method (GAM)” to guide argumentation and
justification of modeling choices during the construction of goal models. One of the el-
ements of GAM is the translation of formal argument models to goal models (similar to
ours). In this sense, our RationalGRL framework can be seen as an instantiation and im-
plementation of part of the GAM. The main difference between our approach and GAM
is that we integrate arguments and goal models using argument schemes, and that we
develop these argument schemes by analyzing transcripts. GAM instead uses structured
argumentation.

The RationalGRL framework is also closely related to frameworks that aim to provide
a design rationale (DR) [SSS+06], an explicit documentation of the reasons behind de-
cisions made when designing a system or artefact. DR looks at issues, options and
arguments for and against the various options in the design of, for example, a software
system, and provides direct tool support for building and analyzing DR graphs. One of
the main improvements of RationalGRL over DR approaches is that RationalGRL in-
corporates the formal semantics for both argument acceptability and goal satisfiability,
which allow for a partly automated evaluation of goals and the rationales for these goals.

Arguments and requirements engineering approaches have been combined by, among
others, Haley et al. [HMLN05], who use structured arguments to capture and validate
the rationales for security requirements. However, they do not use goal models, and thus,
there is no explicit trace from arguments to goals and tasks. Furthermore, like [JFS08],
the argumentative part of their work does not include formal semantics for determining
the acceptability of arguments, and the proposed frameworks are not actually imple-
mented. Murukannaiah et al. [MKTS15b] propose Arg-ACH, an approach to capture
inconsistencies between stakeholders’ beliefs and goals, and resolve goal conflicts us-
ing argumentation techniques.

4.6.2 Open issues

We see a large number of open issues that we hope will be explored in future research.
We discuss five promising directions here.

Architecture principles

One aspect of enterprise architecture that we did not touch upon in this thesis are (enter-
prise) architecture principles. Architecture principles are general rules and guidelines,
intended to be enduring and seldom amended, that inform and support the way in which
an organization sets about fulfilling its mission [Lan05a, OP07, The09a]. They reflect a

90 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

level of consensus among the various elements of the enterprise, and form the basis for
making future IT decisions. Two characteristics of architecture principles are:

• There are usually a small number of principles (around 10) for an entire organi-
zation. These principles are developed by enterprise architecture, through discus-
sions with stakeholders or the executive board. Such a small list is intended to be
understood throughout the entire organization. All employees should keep these
principles in the back of their hard when making a decision.

• Principles are meant to guide decision making, and if someone decides to deviate
from them, he or she should have a good reason for this and explain why this is
the case. As such, they play a normative role in the organization.

Looking at these two characteristics, we see that argumentation, or justification, plays
an important role in both forming the principles and adhering to them:

• Architecture principles are formed based on underlying arguments, which can be
the goals and values of the organization, preferences of stakeholders, environmen-
tal constraints, etc.

• If architecture principles are violated, this violation has to be explained by under-
lying arguments, which can be project-specific details or lead to a change in the
principle.

In a previous paper, we [MvZG16] propose an extension to GRL based on enterprise
architecture principles. We present a set of requirements for improving the clarity of
definitions and develop a framework to formalize architecture principles in GRL. We
introduce an extension of the language with the required constructs and establish mod-
eling rules and constraints. This allows one to automatically reason about the soundness,
completeness and consistency of a set of architecture principles. Moreover, principles
can be traced back to high-level goals.

It would be very interesting future work to combine the architecture principles extension
with the argumentation extension. This would lead to a framework in which principles
cannot only be traced back to goals, but also to underlying arguments by the stakehold-
ers.

Extensions for argumentation

The amount of argumentation theory we used in this chapter has been rather small. Our
intention was to create a bridge between the formal theories in argumentation and the
rather practical tools in requirements engineering. Now that the initial framework has
been developed, is it worth exploring what tools and variations formal argumentation
has to offer in more detail.

For instance, until now we have assumed that every argument put forward by a critical
questions always defeats the argument it questions, but this is a rather strong assumption.
In some cases, it is more difficult to determine whether or not an argument is defeated.
Take, for example, the argumentation framework in Figure 4.16 with just A1 and A2.
These two arguments attack each other, they are alternatives and without any explicit

4.6 Discussion 91

preference, and it is impossible to choose between the two. It is, however, possible to
include explicit preferences between arguments when determining argument acceptabil-
ity [AC02]. If we say that we prefer the action Create new cars (A2) over the action
Keep same cars (A1), we remove the attack from A1 to A2. This makes A2 the only
undefeated argument, whereas A1 is now defeated. It is also possible to give explicit
arguments for preferences [Mod09]. These arguments are then essentially attacks on
attacks. For example, say we prefer A3 over A1 because ‘it is important to have real-
istic traffic flows’ (A4). This can be rendered as a separate argument that attacks the
attack from A1 to A3, removing this attack and making {A3, A4} the undefeated set of
arguments.

Allowing undefeated attacks also make the question of which semantics to choose more
interesting. In our current (a-cyclic) setting, (almost) all semantics coincide, and we
always have the same set of accepted arguments. However, once we allow for cycles,
we may choose accepted arguments based on semantics which, for instance, try to ac-
cept/reject as many arguments as possible (preferred semantics), or just do not make
any choice once there are multiple choices (grounded). Another interesting element of
having cycles is that one can have multiple extensions. This corresponds to various po-
sitions are possible, representing various sets of possibly accepted arguments. Such sets
can then be shown to the user, who can then argue about which one they deem most
appropriate.

A1 A2

Figure 4.16: Preferences between arguments

Finally, in this chapter we have only explored one single argument scheme, but there
are many other around. In his famous book “ Argumentation schemes”, Walton et al.
describe a total of 96 schemes. Murukannaiah et al. [MKTS15a] already explain how
some of these schemes may be use for resolving goal conflicts, and it is worth studying
what this would look like in our framework as well.

Tool support

GRL has a well-documented and well-maintained tool called jUCMNav [MA09]. This
tool is an extension to Eclipse. Although it is a rich tool with many features, we also
believe it is not very easy to set it up. This seriously harms the exposure of the language,
as well as the ability for practitioners to use it. We have started to implement a simple
version of GRL as an online tool in Javascript. This makes it usable from the browser,
without requiring the installation of any tool. The tool can be used from the following
address:

http://marcvanzee.nl/RationalGRL/editor

A screenshot of the tool is shown in Figure 4.17. As shown, there are two tabs in the tool,
one for “Argument” and one for “GRL”. The argument part has not been implemented
yet, and the GRL part only partly, but the idea behind the tool should be clear. Users are

http://marcvanzee.nl/RationalGRL/editor

92 Chapter 4 RationalGRL: A Framework for Argumentation and Goal Modeling

able to work on argumentation and on goal modeling in parallel, where the argumen-
tation consists of forming arguments and counterarguments by instantiating argument
schemes and answering critical questions.

Figure 4.17: Screenshot of the prototype tool

An important aspect of the tool is that users can switch freely between these two ways
of modeling the problem. One can model the entire problem in GRL, or one can do
everything using argumentation. However, we believe the most powerful way to do so
is to switch back and forth. For instance, one can create a simple goal model in GRL,
and then turn to the argumentation part, which the users can look at the various critical
questions for the elements, which may trigger discussions. These discussions results
in new arguments for and against the elements in the goal model. Once this process is
completed, one may switch to the goal model again, and so on. We believe that in this
way, there is a close and natural coupling between modeling the goals of an organization
as well as rationalizing them with arguments.

Empirical study

Although we develop our argument schemes and critical questions with some empirical
data, we did not yet validate the outcome. This is an important part, because it will
allow us to understand whether adding arguments to goal modeling is actually useful.
We have developed an experimental setup for our experiment, which we intend to do
during courses at various universities. However, we cannot carry out this experiment
until the tool is finished.

Formal framework

The formal framework we present in this chapter is very simple, and does not provide a
lot of detail. In line with our approach in Chapter 2, we believe it would be interesting
to develop a more robust characterization of a GRL model using logical formulas. Right

4.6 Discussion 93

now, we have no way to verify whether the goal models we obtain through out algorithms
are actually valid GRL models. This is because we allow any set of atoms to be a GRL
model, which is clearly very permissive and incorrect. Once we develop a number of
such constraints, we can ensure (or even proof) our algorithms do not generate invalid
GRL models.

For instance, suppose we assert that an intentional element is a goal, softgoal, task, or
resource:

(so f tgoal(i)∨goal(i)∨ task(i)∨ resource(i)→ IE(i).

We can then formalize an intuition such as: “Only intentional elements can be used in
contribution relations” as follows:

contrib(k, i, j,ctype)→ (IE(i)∧ IE(j)∧ IE(j).

Interestingly, such constraints are very comparable to logic programming rules. We
therefore see it as interesting future research to explore this further, specifically in the
following two ways:

• Develop a set of constraints on sets of atoms of our language, which correctly
describe a GRL model. Show formally that using our algorithms, each extension
of the resulting argumentation framework corresponds to a valid GRL model, i.e.,
a GRL model that does not violate any of the constraints.

• Implement the constraints as a logic program, and use a logic programming lan-
guage to compute the resulting GRL model.

4.6.3 Conclusion

In this chapter, we develop the RationalGRL framework to trace back elements of GRL
models to arguments used in discussions between stakeholders. The contributions of this
chapter have become increasingly more formal. First, we analyze transcripts of meetings
about the development of an information system. We count occurrences of argument
schemes and critical questions, and categorize them by the effect of instantiating them.
Then, we create a visual notation to link arguments and questions to elements of a goal
model. If an argument for an element of a goal model is rejected, then the corresponding
element is disabled. Similarly, if the argument is accepted, then the corresponding ele-
ment is enabled. Finally, we formalize the argument schemes and critical questions in
a logical framework. We propose a formal language to describe a GRL model, and we
develop various algorithms for applying our argument schemes and critical questions.

Our framework is one of the first attempts that try to combine the formal theory of
argumentation with the practical frameworks of goal modeling. History has shown that
it is remarkably difficult to combine formal results with practice. By taking argument
schemes as a starting point, we believe we have chosen the right level of formality, but
as the open issues section shows, much work is left to be done.

Part III

Planning and Scheduling

95

5

A Logic for Beliefs about Actions and
Time

Abstract The overall aim of the third and final part of this thesis is to study the dynam-
ics of enterprise architecture plan commitments. We do so by developing a temporal
logic for beliefs and intentions. The logic is called Parameterized-time Action Logic,
and contains expressions about temporal propositions (tomorrow the hardware will ar-
rive), possibility (the hardware may arrive tomorrow), actions (the meeting takes place)
and pre- and post-conditions of these actions. In this chapter, we lay out the methodol-
ogy of this part, which is based on Shoham’s database perspective. We then introduce
Parameterized-time Action Logic, axiomatize it and proof completeness. We use this
logic in the next chapter to characterize the dynamics of enterprise architecture commit-
ments.

Preliminary remark

To avoid confusing the reader, we should start this part with a remark about our ap-
proach. Recall from the introduction that the overall aim of this thesis is to build a
bridge from artificial intelligence to enterprise architecture. As we progress through the
thesis, our contributions become increasingly technical and less related to enterprise ar-
chitecture. This third and last part of the thesis is therefore the most technical one, and
the direct relation between enterprise architecture is less clear.

Motivated by our findings in Chapter 2 and 3, our methodology is to develop a belief-
desire-intention logic– a specific approach towards formalizing resource-bounded agents-
– to characterize the dynamics of enterprise architecture commitments. Because of the
level of technicality, this part has mostly been written for an audience familiar with
knowledge representation, commonsense reasoning, and belief-desire-intention logics.
Since one of the most-well known approaches in belief-desire-intention logics is due to
Cohen and Levesque [CL90b], we start out by contrasting our approach with their by
using their example, which is about a robot. This may seen strange from an enterprise
architecture point of view, but we believe it does make sense from a historical point of
view.

5.1 Introduction

Sometime in the near future you will tell your household robot: “Bobby, get me some
beer from the store”. Bobby confirms your request, but when its walking to the store it

97

98 Chapter 5 A Logic for Beliefs about Actions and Time

encounters your partner, who says: “Bobby, our house is a mess, go home and clean”.
Bobby returns home, takes the mop out of its closet and prepares to start cleaning. Just
as it is ready to make its first swipe, one of your friends walks in asking: “Bobby, it
has been snowing outside, could you clean my car?”. In the meantime, you are getting
increasingly frustrated by your lack of beer, and when you see Bobby in the kitchen you
shout: “You still didn’t get my beers? Go get them immediately!”. After letting Bobby
run around for a few days you return the robot to the factory complaining it does not
finish any of the tasks it starts with.

When Bobby 2.0 arrives, the manufacturer happily tells you the new settings will no
longer cause Bobby to drop its commitments so quickly. Delighted, you exclaim: “Bobby,
I have some friends coming over tonight, get some ingredients and cook diner so we can
eat at 7pm tonight”. Realizing the shop closes only at 5pm, Bobby 2.0 delays going to
the grocery story until the very last moment, hereby keeping its schedule free for other
possible tasks. Unexpectedly, on its way to the grocery store Bobby is delayed by an
open bridge and arrives at the store minutes after closing time. It returns to your home
empty-handed, leaving you and your friends hungry. It turns out Bobby 2.0 is delaying
every task until just before the deadline. Since tasks often have unexpected delays, this
means that most of the tasks are finished too late, or not at all. Frustrated, you return it
to the factory again, complaining that Bobby is procrastinating its commitments.

On return, the manufacturer ensures you that Bobby 3.0 will no longer postpone fulfill-
ing its commitments, nor will it drop them quickly. At this time you are rather skeptical,
but still you ask: “Bobby, I’d like to have diner tonight again. Please buy the ingredi-
ents at 2pm, and cook for me at 6pm”. Around 12pm, your partner again realizes the
house hasn’t been cleaned properly for a long time, and therefore tells Bobby to clean
the house intensively. At 6pm, you sit at your kitchen table wondering where diner is,
so you call Bobby asking what happened. Bobby explains it had to clean the house at
12pm, which took three hours, so it couldn’t fulfill its commitment to go shopping at
2pm.

Disappointed, you return it to the manufacturer where it is dismantled.

5.1.1 Commitment to time

The example above is very similar to the example of Willie the robot, due to [CL90b].
In their article entitled “Intention = Choice + Commitment”, Cohen and Levesque were
interested in specifying the rational balance of autonomous agents, focusing on the role
that intention plays in maintaining this balance. Their approach has typified much subse-
quent research on belief-desire-intention (BDI) logics, namely to understand and study
intentions as commitment in relation to goals and desires. For instance, [RG91] define
various commitment strategies of an agents, from blindly committed towards goals, to
open mindedly committed. A popular approach is to specify a temporal logic such as
linear-time logic (LTL) or computational-tree logic (CTL*) and use modal operators for
mental states and use expression of the form “some time in the future”, or ”in the next
time moment” to reason about the temporal behavior.

In approaches following the ideas of Cohen and Levesque ([RG91, MvdHvL99] are two
examples), intention is often defined as commitments towards goals. However, being
committed towards a goal is only one dimension of a commitment, while they have

5.1 Introduction 99

many more aspects. One important aspect of a commitment that we focus on in this
thesis is commitment towards time, i.e., when these commitments will be fulfilled. In
the example above, Bobby the robot is an online system; it is receiving orders, forming
plans, scheduling tasks, and executing them, all in parallel and in real-time. Bobby plans
its commitments at appropriate moments, making sure the different plans do not overlap
or are incompatible, while it at the same time may receive new instructions from users.

When specifying a system exogenously, which has typified much work on philosophi-
cal logic, it may be sufficient to reason about behaviors with notions such as “Bobby
believes it should do shopping some time in the future”, or “in the next time moment,
Bobby intends to make diner”. However, if we specify a system endogenously, which
typifies much work in computer science and planning, one has to be more precise about
when commitments will be fulfilled. Indeed, Bobby should know it has the commitment
to go shopping at 2pm, and not some time in the future, so that its planner can continue
planning on this assumption. By focusing on commitments towards time we therefore
aim to bridge the gap between logics of agency on the one side and computer science
and planning on the other side.

We will see that even in a simplified setting where we only consider commitments to-
wards time, already non-trivial complications arise. Commitments play the role of as-
sumptions on which further plans are based. The three versions of Bobby the household
robot each use a different behavior when it comes to commitment to time. The first
version uses a stack-like data structure in order to execute its tasks: it adds each new
commitments on the stack, and then executes the tasks on top of its stack. The second
version rather uses a queue, and moreover delays executing these tasks until the very last
moment. Finally, the last version is able to schedule its commitments in time, but it can-
not reschedule them. None of these versions seem to be able to fulfilled commitments
in a desired way. Instead, Bobby should be able to make plans, store the commitments
and use these as assumptions in further planning.

5.1.2 Methodology

Figure 5.1: The database perspective

We view the problem of intention revision as a database management problem (see [Sho09]
for more on the conceptual underpinnings of this standpoint). At any given moment, an
agent must keep track of a number of facts about the current situation. This includes
beliefs about the current state, beliefs about possible future states, which actions are
available now and in the future, and also what the agent plans to do at future moments.

100 Chapter 5 A Logic for Beliefs about Actions and Time

It is important that all of this information be jointly consistent at any given moment and
furthermore can be modified as needed while maintaining consistency.

In this chapter we introduce a simple logic that formally models such a “database”, and
in the next chapter we study its dynamics. Consistency in this logic is meant to represent
not only that the agent’s beliefs are consistent and the agent’s future plan is consistent,
but also that the agent’s beliefs and intentions together form a coherent picture of what
may happen, and of how the agent’s own actions will play a role in what happens. Our
primary contribution in this thesis is to focus also on how the database is to be modified,
and in the process to provide a clear picture of how intentions and beliefs relate.

What can cause an agent’s database to change? In this thesis, we focus on two main
sources (Figure 5.1):

1. The agent makes some observation, e.g. from sensory input. If the new observa-
tion is inconsistent with the agent’s beliefs, these beliefs will have to be revised
to accommodate it. While we are fully aware of their shortcomings, in particular
when it comes to iterated revision, our account of belief revision follows the clas-
sical AGM postulates [AGM85] rather closely. The goal is thus to give general
conditions on a single revision with new information that the agent has already
committed to incorporating.

2. The agent forms a new intention. Here we focus on future directed intentions,
understood as time-labeled actions pairs (a, t) that might make up a plan. Analo-
gously to belief revision, it is assumed the agent has already committed to a new
intention, so it must be accommodated by any means short of revising beliefs.
The force of the theory is in restricting how this can be accomplished. To be more
precise, we purport to model an intelligent database, which receives instructions
from some planner (e.g. a STRIPS-like planner) that is itself engaged in some
form of practical reasoning. The job of the database is to maintain consistency
and coherence between intentions and beliefs.

This simple description, however, obscures some important subtleties in the interaction
between beliefs and intentions. The following will serve as a running example that we
will use frequently throughout this and the next chapter.

Example 5.1 (Running Example). Bobby the household robot is considering to buy
groceries in the morning and to buy cleaning equipment in the afternoon. Although it is
instructed to do both tasks, it only has sufficient budget to do either one of the two, but
not both of them. Bobby thus believes it is possible to buy cleaning equipment and to
buy food, but it also believes it is impossible to buy both. If Bobby decides to buy food,
then it would like to cook in the afternoon.

Upon adopting the intention to buy food, Bobby will come to have new beliefs based on
the predicted success of this intention, e.g., the he will be able to cook afterwards. These
further beliefs are important when planning when or how to cook. The intention is also
supported by the absence of certain beliefs. It would be irrational for Bobby to adopt
the intention to buy food if it believed it did not have sufficient money. Likewise, even if
it originally believed it has sufficient money, upon learning it does not, the intention to
cook food should be dropped. Yet, when dropping this intention, other beliefs, such as
that he will be able to cook, have to be dropped as well, which may in turn force other
intentions and beliefs to be dropped. And so on.

5.1 Introduction 101

5.1.3 Strong and weak beliefs

To deal with issues described above, we separate between beliefs depending on inten-
tions, i.e. weak beliefs, and beliefs that do not, i.e. strong beliefs.1 Strong beliefs
concern the world as it is, independent of the agent’s future plans, but including what
(sequences of) actions are possible. Thus, additionally to atomic facts, the agent may
have beliefs about what the preconditions and postconditions of actions are, and about
which sequences of actions are jointly possible.

A key element in our approach is that we treat preconditions of actions as assumptions.
This leads to an the asymmetry on beliefs about preconditions and postconditions of
actions. First of all, we assume that

If an agent intends to take an action at some time t, it weakly believes that
its postconditions hold at time t +1.

Since we are not considering actions whose effects are uncertain or dependent on the
conditions that obtain when the action is taken, if an action is planned the planner be-
lieves whatever follows from it.

However, for preconditions we add a weaker requirement:

If an agent intends to take an action at time t, it cannot believe that its
preconditions do not hold.

This requirement is sometimes called strong consistency, and is weaker than Bratman’s
means-end coherence requirement [Bra87]. The result of this weakened requirement is
that preconditions of actions are treated as assumptions: An autonomous agent forms
intentions under the assumption that these preconditions will be made true somewhere
in the future. Treating preconditions as assumptions is a good fit with how real-time
planning agents operate: Intended actions may be added as long as they are consistent
with beliefs, and once they are accepted they can be used as additional assumptions to
further plans [Sho09]. For instance, the household robot Bobby has the intention to
cook diner tonight, which is based on the intention to buy the ingredients, which is in
turn based on the assumptions that your friends will attend tonight, even if it does not
know this for sure yet. It is only when Bobby finds out your friends are not coming, it
should drop its intentions.

5.1.4 Results and overview

We develop a branching-time temporal logic, called Parameterized-time Action Logic
(PAL) in order to formalize beliefs. The language of this logic contains formulas to
reason about possibility, preconditions, postconditions, and the execution of actions.
The semantics of this logic is close to CTL*, and in this way follows the tradition of
BDI logics of [RG91]. An important difference is that we do not use modal operators to
reason about time, but we use explicit time points. We axiomatize this logic and proof
that the axiomatization is sound and strongly complete with respect to our semantics.

1The terminology of strong and weak beliefs is due to [vdHJW07].

102 Chapter 5 A Logic for Beliefs about Actions and Time

The structure of this chapter is as follows. In Section 5.2 we introduce the syntax, and
in Section 5.3 the semantics. In Section 5.4 we axiomatize our logic, and in Section 5.5
we prove completeness. We discuss related work, open issues, and a conclusion in
Section 5.6.

5.2 PAL syntax

Our aim in this section is to develop a logical system that represents an agent’s beliefs
about the current moment and future moment and actions that may be performed. Beliefs
are represented by the formal language L .

Definition 5.1 (Language). Let

• Act = {a,b,c, . . .} be a finite set of deterministic primitive actions, containing the
special “no operation” action NOP;

• Prop = {p,q,r, . . .}∪ {pre(a,b, . . .), post(a) | {a,b, . . .} ⊆ Act} be a finite set of
propositions. We denote atomic propositions with χ.

The sets Prop and Act are disjoint. The language L is inductively defined by the follow-
ing BNF grammar:

ϕ ::= χt | do(a)t |2tϕ | ϕ∧ϕ | ¬ϕ

with χ ∈ Prop,a ∈ Act, and t ∈ N. Furthermore, we abbreviate ¬2t¬ with 3t , and we
define ⊥≡ p0∧¬p0 and >≡ ¬⊥.

Intuitively, pt means that the atomic formula p is true at time t, do(a)t means that action
a is executed at time t. To every finite sequence of actions (a,b, . . .) and every time
point t we associate a formula pre(a,b, . . .)t , which is understood as the precondition for
subsequently executing actions a,b, . . . at time t. We define preconditions for sequences
of actions explicitly, because it is not generally possible to define the precondition for
a sequence of actions using preconditions for individual actions. This can already be
witnessed in our running example: Bobby believes the preconditions to buy food and
cleaning equipment are true separately, but still does not believe the precondition for
performing both actions subsequently is true. These type of formulas will play a crucial
role when we formalize the coherence condition in the next chapter.

To every action a and every time point t we associate a formula post(a)t , which is under-
stood as the postcondition of action a at time t. The modal operator 2t is interpreted as
necessity, indexed with a time point t. Intuitively, a formula of the form 2t pt+1 means
“it is necessary at time t that p is true at time t +1”. The other boolean connectives are
defined as usual.

Example 5.2 (Running example (Ctd.)). Let our language contain:

• Act = { f ood,equip,cook,NOP}, where f ood is the action “buy food”, equip is
the action “buy cleaning equipment”, and cook is the action “cook”, and NOP is
the special “no operation” action,

5.3 PAL semantics 103

• Prop = {pre(a,b, . . .), post(a) | {a,b, . . .} ⊆ Act}

Some examples of formulas in the language generated from Act and Prop are:

• pre(f ood)0 ∧ do(nop)0 ∧ do(equip)1 (the precondition to buy food at time 0 is
true, no action is performed at time 0, and Bobby buys cleaning equipment at time
1)

• 30(do(f ood)0 ∧¬do(cook)1) (it is possible at time 0 to buy food at time 0 and
not to cook at time 1),

• 30do(f ood)0∧30do(equip)1∧¬30(do(f ood)0∧do(equip)1) (it is possible to
buy food at time 0 and it is possible to buy equipment at time 1, but it is not
possible to do both),

• pre(f ood,cook)0 (the precondition to buy foot at time 0 and then cook at time 1
is true).

• do(equip)1 (Bobby will buy cleaning equipment at time 1)

• 30¬31do(cook)1 (it is possible at time 0 that it is not possible at time 1 to cook).

•
∨

x∈Act pre(f ood,x,equip)0 (the precondition to buy food at time 0 and to buy
equipment at time 2 is true, if a right action is performed at time 1).

The following definition collects all formulas up to some time t in a set Past(t), which
will turn out to be convenient when we axiomatize our logic. Note that formulas up to
time t only contain do(a)t ′ statements with t ′ < t. A formula of the form do(a)t will
be semantically defined as a transition from t to t + 1. Therefore it does not belong to
the formulas true up to time t. We will make this more precise when we introduce the
semantics in the next subsection.

Definition 5.2. Past(t) is the set of all PAL formulas generated by boolean combina-
tions of pt ′, pre(a,b, . . .)t ′, post(a)t ′ , 2t ′ϕ, and do(a)t ′−1 where t ′ ≤ t and ϕ is some PAL
formula.

5.3 PAL semantics

The semantics of our logic is similar to CTL* [Rey02], namely a tree structure con-
taining nodes and edges connecting the nodes. A tree can equivalently be seen as an
enfolded transition system, thereby representing all the possible runs through it. We
choose to represent our semantics using trees because it simplifies the completeness
proofs. See [Rey02] for an overview of different kinds of semantics and conceptual
underpinnings.

With each natural number i ∈N we associate a set of states Si such that all these sets are
disjoint. We then define the accessibility relation between states such that it generates
an infinite, single tree.

Definition 5.3 (Tree). A tree is quadruple T = (S,R,v,act) where

104 Chapter 5 A Logic for Beliefs about Actions and Time

• S =
⋃

n∈N Sn is a set of states, such that each St is the set of states at time t,
Si∩S j = /0 for i 6= j;

• R ⊆
⋃

n∈N Sn× Sn+1 is an accessibility relation that is serial, linearly ordered in
the past and connected (so S0 is a singleton);

• v : S→ 2Prop is a valuation function from states to sets of propositions;

• act : R→ Act is a function assigning actions to elements of the accessibility re-
lation, such that actions are deterministic, i.e. if act((s,s′)) = act((s,s′′)), then
s′ = s′′.

We evaluate formulas on a path in a tree. A path is a sequence of states in a tree,
connected by the accessibility relation R.

Definition 5.4 (Path). Given a tree T = (S,R,v,act), a path π = (s0,s1, . . .) in T is a
sequence of states such that (st ,st+1) ∈ R. We write πt to refer to the t’th state of the
path π. We use elements of the path as arguments for the valuation function and the
action function:

• v(πt) are the propositions true on path π at time t;

• act((πt ,πt+1)) is the next action on path π at time t. We abbreviate act((πt ,πt+1))
with act(πt), since πt+1 is uniquely determined by the action.

Intuitively, v(πt) are the propositions true at time t on path π, and act(πt) is the next
action a on the path. We next define an equivalence relation ∼t on paths, which is used
to give semantics to the modal operator.

Definition 5.5 (Path equivalence). Two paths π and π′ are equivalent up to time t, de-
noted π∼t π′, if and only if the states up to time t are the same, i.e.

π∼t π
′ iff (∀t ′ ≤ t).(v(πt ′) = v(π′t ′)) and

(∀t ′ < t).(act(πt ′) = act(π′t ′)).

Formulas in PAL are evaluated on a path. Therefore, a model for a formula is pair
consisting of a tree and a path in this tree. This, together with some additional constraints
related to the pre- and post-conditions of actions, is our definition of a model.

Definition 5.6 (Model). A model is a pair (T,π) with T = (S,R,v,act) such that for all
π ∈ T the following holds:

1. If act(πt) = a, then post(a) ∈ v(πt+1),

2. If pre(a) ∈ v(πt), then there is some π′ in T with π∼t π′ and act(π′t) = a,

3. If pre(a,b, . . .) ∈ v(πt), then there is some π′ in T with π ∼t π′, act(π′t) = a, and
pre(b, . . .) ∈ v(π′t+1).

4. If pre(. . . ,a,b) ∈ v(πt), then pre(. . . ,a) ∈ v(πt),

We refer to models of PAL with m1,m2, . . ., we refer to sets of models with M1,M2, . . .,
and we refer to the set of all models with M.

5.3 PAL semantics 105

Most of the conditions on models are there to formalize the asymmetry we put on pre-
and-postconditions, as discussed in the introduction. Condition 1 is straightforward:
we simply expect postconditions to hold in a state after an action has been executed.
Condition 2 and 3 put the weaker requirement on the preconditions for actions: If the
precondition holds, then there is some path in which the action is executed. The opposite
direction, stating that preconditions are necessary for executing actions, will be formal-
ized with a coherence condition on beliefs and intentions in the next chapter. Condition
4 of a model simply ensures that if the precondition of a sequence of action is true in
a state, then the precondition for any subsequence by removing actions from the end of
the sequence is also true in that state.

Example 5.3 (Running example (Ctd.)). Consider the partial PAL model (T,π′) of the
beliefs of Bobby the household robot from time 0 to time 2 in figure 5.2, where the thick
path represents the actual path. Note that we have omitted pre-and postconditions for
the NOP action. We provide some examples of the conditions of our model (defini-
tion 5.6):

• since act(π1) = equip, post(equip) ∈ v(π2) holds as well (condition 1),

• since pre(cook)∈ v(π′′1), there is some path, namely π′ with π′≡t π′′ and act(π′1)=
cook (condition 2),

• since pre(f ood,cook)∈ v(π0), there exists some path, namely π′ with π≡0 π′,act(π′0)=
f ood, and pre(cook) ∈ v(π′1) (condition 3),

• since pre(f ood,cook) ∈ v(π0), pre(f ood) ∈ v(π0) holds as well (condition 4).

t = 0 t = 1 t = 2

s0

{pre(f ood),
pre(f ood,cook)}

s1

{pre(equip)}
s2 {post(equip)}

s3

{pre(cook),
post(f ood)}

s4 {post(cook)}

s5

π

π′

π′′

nop

equip

food

cook

nop

Figure 5.2: Example PAL Model (T,π′) from t = 0 to t = 2. Pre-and postconditions for NOP
actions are omitted for readability.

We now provide the truth definitions. Recall that formulas are evaluated on a path as a
whole, and not in a state.

Definition 5.7 (Truth definitions). Let m = (T,π) be a model with T = (S,R,v,act):

T,π |= χt iff χ ∈ v(πt) with χ ∈ Prop

T,π |= do(a)t iff act(πt) = a

T,π |= ¬ϕ iff T,π 6|= ϕ

T,π |= ϕ∧ϕ′ iff T,π |= ϕ and T,π |= ϕ′

T,π |= 2tϕ iff for all π′ in T : if π′ ∼t π, then T,π′ |= ϕ

106 Chapter 5 A Logic for Beliefs about Actions and Time

The truth definitions state that propositions are simply evaluated using the valuation
function v, but do statements are different. They are about state transitions, and therefore
use the action function act. Since we are evaluating formulas from a state, the modal
operator 2t is indexed with a time point t, and corresponds to the equivalence relations
∼t .

Example 5.4 (Running Example (Ctd.)). We provide some example of applications of
the truth definition for the model in figure 5.2:

T,π |= pre(f ood)0∧do(nop)0∧do(equip)1

T,π |= 30(do(f ood)0∧¬do(cook)1)

T,π |= 30do(f ood)0∧30do(equip)1∧¬30(do(f ood)0∧do(equip)1)

T,π′ |= pre(f ood,cook)0

T,π′ 6|= do(equip)1

T,π′′ |= 30¬31do(cook)1

Next we turn to the notions of validity, satisfiability, and semantic consequence.

Definition 5.8 (Validity, satisfiability, and semantic consequence).

• ϕ is valid, i.e. |= ϕ iff for all models m: m |= ϕ.

• ϕ is satisfiable iff there exists a model m such that m |= ϕ.

• ϕ is a semantic consequence of a set of formula Σ, i.e. Σ |= ϕ iff ∀m : m |= Σ⇒
m |= ϕ.

Definition 5.9 (Model of a formula). We say that a model m is a model of a formula ϕ

if m |= ϕ. We denote the set of all models of a formula ϕ by Mod(ϕ), i.e.,

Mod(ϕ) = {m ∈M | m |= ϕ}.

5.4 PAL axiomatization

In this part we present the axiomatization of our logic, and we explain the most impor-
tant axioms in turn.

Propositional tautologies (PROP)
2t(ϕ→ ϕ′)→ (2tϕ→2tϕ

′) (K)
2tϕ→ ϕ (T)
3tϕ→2t3tϕ (5)

Axioms PROP, K, T, and 5 together ensure our modal operator is an equivalence rela-
tion. This is simply the modal logic system KT5 or KD45.

χt →2tχt , where χ ∈ Prop (A1)
3tχt → χt , where χ ∈ Prop (A2)

5.4 PAL axiomatization 107

Axioms A1 states that if a proposition is true in a state on a path, then it is necessarily
true at that time, i.e., it is true in all equivalent paths. The contraposition of Axiom A2
states the same for negated propositions. These axioms follow from the definition of the
equivalence ∼t between paths: if two paths are equivalent up to time t, then the same
propositions are true in time t as well.

do(a)t →2t+1do(a)t (A3)
3t+1do(a)t → do(a)t (A4)

Axioms A3 and A4 are similar to A1 and A2, but then for the case of actions. Recall that
do statements are semantically represented as transitions between states (definition 5.7).
Therefore, the modal operator is indexed with the next time point t +1.

2tϕ→2t+1ϕ (A5)

Axiom A5 is a result of the fact that for some path π the number of paths equivalent with
π can only decrease as time moves forward. Therefore, if something is true on all paths
equivalent up to time t, then it is necessarily true on all paths equivalent up to the next
time moment t +1.

∨
a∈Act do(a)t (A6)

do(a)t →
∧

b6=a¬do(b)t (A7)

Axioms A6 and A7 together state that exactly one action is executed at every time mo-
ment.

do(a)t → post(a)t+1 (A8)
pre(a)t →3tdo(a)t (A9)
(pre(a,b, . . .)t ∧do(a)t)→ pre(b, . . .)t+1 (A10)
pre(. . . ,a,b)t → pre(. . . ,a)t (A11)

Axioms A8-A11 directly correspond to properties 1-4 of a model (definition 5.6).

3t(do(a)t ∧α)→2t(do(a)t → α) (A12)
where α ∈ Past(t +1)

Axiom A12 ensures actions are deterministic. If something holds immediately after per-
forming action a in time t (which is why α ∈ Past(t +1)), then it necessarily holds after
performing that action in time t. Note this formula does not hold without the restriction
of α to Past(t +1), because because formulas containing time points greater than t +1
may depend on actions performed after time t.

In addition to these axioms, PAL has two inference rules, a variant of Necessitation and
Modus Ponens:

108 Chapter 5 A Logic for Beliefs about Actions and Time

From ϕ, infer 2tϕ (NEC)
From ϕ,ϕ→ ϕ′, infer ϕ′ (MP)

Remark 3. In our current axiomatization and semantics, preconditions are sufficient
conditions of actions to be possible, but they are not necessary (Axiom A9, respectively
condition 2 of definition 5.6). Alternatively, one may strengthen this axiom as follows:

pre(a)t ↔3tdo(a)t (A9*)

The correspondence is preserved by changing the condition (2) of definition 5.6 from
an “if” to an “if and only if”. However, our choice for A9 is an implementation of
Shoham’s idea of “opportunistic planning”: a planner may form intentions, even though
at the moment of planning it may not be clear whether preconditions are true [Sho09].

We next formalize the notion of theorems and derivability.

Definition 5.10 (Theorems in PAL). A derivation of ϕ within PAL is a finite sequence
ϕ1, . . . ϕm of formulas such that:

1. ϕm = ϕ;

2. every ϕi in the sequence is either

(a) (an instance of) one of the axioms

(b) the result of the application of Necessitation or Modus Ponens to formulas
in the sequence that appear before ϕi.

If there is such a derivation for ϕ we write ` ϕ. and we say ϕ is a theorem of PAL.

We define theorems and derivability separately because we restrict the application of the
Necessitation rule to theorems only.

Definition 5.11 (Derivability in PAL). A derivation for a formula ϕ from a set of formu-
las Σ is a finite sequence ϕ1, . . . ϕm of formulas such that:

1. ϕm = ϕ;

2. every ϕi in the sequence is either a theorem, a member of Σ, or the result of the
application of Modus Ponens to formulas in the sequence that appear before ϕi.

If there is such a derivation from Σ for ϕ we write Σ ` ϕ. We then also say that ϕ is
derivable from the premises Σ.

Furthermore, a set of formulas Σ is consistent if we cannot derive a contradiction from
it, i.e., Σ 6`⊥, and a set of formulas Σ is maximally consistent if it is consistent and every
superset is inconsistent.

We denote by Cn(Σ) the set of consequences of Σ, i.e.

Cn(Σ) = {ϕ | Σ ` ϕ}.

5.5 Soundness and completeness 109

5.5 Soundness and completeness

In this section we prove the axiomatization of PAL is sound and strongly complete with
respect to its semantics.

Theorem 5.1 (Completeness Theorem). The logic PAL is sound and strongly complete,
i.e. Σ ` ϕ iff Σ |= ϕ.

We provide a proof sketch of the theorem. The full proofs of all the results in this chapter
can be found in the appendix.

Proof Sketch. We prove the following formulation of completeness: each consistent set
of formulas Σ has a model. We prove the Lindenbaum lemma, stating that each con-
sistent set can be extended to a maximally consistent set Σ′, i.e. Σ′ is consistent and
each proper superset of Σ′ is inconsistent. In the first step we extend Σ to a maximally
consistent set Σ0.

Then for each t we define an equivalence relation≡t on maximally consistent sets in the
following way:

Σ
∗
1 ≡t Σ

∗
2 iff Σ

∗
1∩Past(t) = Σ

∗
2∩Past(t).

Let us denote the corresponding equivalence classes by [Σ∗]t , which means {Σ∗ | Σ∗ ≡t
Σ
∗}.

In the second part of the proof, using the maximally consistent superset Σ∗ of Σ (which
exists by the Lindenbaum lemma), we define the tree MΣ∗ = (S,R,v,a):

1. S =
⋃

t∈N St where St = {[Σ
∗
]t | Σ

∗ ≡t Σ∗}

2. sRs′ iff (∃Σ∗, t ∈ N).(s = [Σ
∗
]t ∧ s′ = [Σ

∗
]t+1)

3. χ ∈ v(s) iff (∃Σ∗, t ∈ N).(s = [Σ
∗
]t ∧χt ∈ Σ

∗
).

4. a = act((s,s′)) iff (∃Σ∗).(s = [Σ
∗
]t ∧ s′ = [Σ

∗
]t+1∧do(a)t ∈ Σ

∗
).

Given a mcs T ∗, we construct a path πT ∗ = (s0,s1, . . .) from it by letting st = [T ∗]t . So
p ∈ vp(πT ∗t) iff pt ∈ T ∗ and a = act(πT ∗t) iff do(a)t ∈ T ∗.

If π(Σ∗) = (s0,s1, . . .), where st = [Σ∗]t , then one can show that (MΣ∗,π(Σ
∗)) is a model.

Finally, we prove that for each ϕ, (MΣ∗,π(Σ
∗) |= ϕ iff ϕ ∈ Σ∗), using induction on the

depth of the proof. Consequently, MΣ∗,π(Σ
∗) |= Σ.

5.6 Discussion

Since this part consists of two separate chapter, we only discuss the related work, open
issues and conclusions of this chapter here. For related work and open issues on inten-
tions, please see the discussion in the next chapter.

110 Chapter 5 A Logic for Beliefs about Actions and Time

5.6.1 Related work

Time in temporal logics can be defined in an implicit or explicit manner. A time model
is implicit when the meaning of formulas depends on the evaluation time, and this is left
implicit in the formula. Standard LTL and CTL define time implicitly. For instance, 2Φ

means that ∀t ∈ [T0,∞].Φ(t), where T0 is the evaluation time (the so-called current time
instant). A standard way of introducing real time into the syntax of temporal languages
constrains the temporal operators with time intervals [ET99, Koy90, AH90, AFH96].
In order to model such time intervals, timed automata may be used. These automata
model the behavior of time-critical systems. A timed automaton is in fact a program
graph that is equipped with a finite set of real-valued clock variables, called clocks for
short [AD94]. Timed CTL (TCTL, for short) is a real-time variant of CTL aimed to
express properties of timed automata. In TCTL, the until modality is equipped with a
time interval such that ΦUJΨ asserts that a Ψ-state is reached within t ∈ J time units
while only visiting Φ-states before reaching the Ψ-state. The formula ∃2JΦ asserts that
there exists a path for which during the interval J, Φ holds; ∀2JΦ requires this to hold
for all paths [BK08]. While such logics allow one to express timed constraints on the
modalities in TCTL, there is no way to refer explicitly to the states at which a certain
formula holds.

When time is explicit, the language represents the time through a variable. For example,
in the following formula an explicit model of time is used:

∀t.2(E ∧T = t)→3(A∧T − t < 10)

where E is an event [BMN00]. This is for instance formalized by Ostroff when solving
control problems using real-time temporal logic (RTTL) [Ost89].

The logic of strategic abilities ATL* (Alternative-Time Temporal Logic), introduced and
studied by Alur et al. [AHK98], is a logical system, suitable for specifying and verify-
ing qualitative objectives of players and coalitions in concurrent game models. For-
mally, ATL* is a multi-agent extension of the branching time logic CTL* with strategic
path quatifiers 〈〈C〉〉 indexed with coalitions C of players. Bulling and Goranko [BG13]
propose a quantitative extension of ATL*, in which it is possible to express temporal
constraints as well. For instance, the expression φ∧ x = t denotes that φ will be true
after t transitions, where each transition adds 1 to x.

Many logical systems have been developed for reasoning about the pre and postcondi-
tions of actions with explicit time points, such as the Event Calculus [Mue10], Temporal
Action Logics [Kva05], extensions to the Fluent Calculus [Thi01], and extensions to the
Situation Calculus [PP03] (see [Pat10, Ch.2] for an overview). Our logic is considerably
simpler, but the reason for this is because of the type of revision we aim to characterize
in the next chapter. Although there are a number of correspondences between AGM
postulates and some of the approaches above, none of them prove representations theo-
rems linking revision to a total pre-order on models, which is what we aim to do in the
next section.

The logic PAL is also closely related to the logic developed by Icard et al. [IPS10],
who study the joint revision of beliefs and intentions using AGM-like postulates. While
many of the ideas are similar to ours, our logic has a standard branching time semantics,
while the path semantics of Icard is less familiar.

5.6 Discussion 111

5.6.2 Open issues

The most interesting open issues of this last part of the thesis can be found in the next
chapter, but when looking at this chapter in isolation one can already identify some
directions from here that can be explored.

The frame problem is one of the most fundamental problems in reasoning about action
and change. The challenge is how to specify the non-effects of actions succinctly. For
instance, if a proposition such as “The table is red” is true at some time t, and no action
occurs that affects the truth value of this proposition, then it seems plausible that the
table is still red at time t + 1. Currently, our framework does not contain so-called
“frame axioms”.

Other mental attitudes, such as intentions, goals, desires and preferences, we have left
out completely. This is not because we assume that they are unimportant, but because it
was our goal to focus on formalizing the database perspective in a temporal setting.

5.6.3 Conclusion

We present a temporal logic for reasoning about beliefs and action in time. Semantically,
our logic is close to CTL* but has a number of important differences. First, PAL contains
time-indexed modalities, which allows one to express statements such as “It is possible
in February that I will attend IJCAI in July”. Secondly, PAL allows for explicit reasoning
about pre-and postconditions of deterministic actions. Thirdly, PAL only contains one
type of modality, while CTL* contains a next operator and an until operator as well.
The last two reasons arguably make PAL less expressive that CTL*, but in return the
axiomatization is straightforward, we are able to obtain strong completeness, and it is
possible to prove both representation theorems. It seems that this is not possible for
CTL* in general.

The main motivation for developing the logic in the chapter is to obtain a representation
result for belief and intention revision in the next chapter.

6

The Dynamics of Beliefs and Intentions

Abstract In this chapter we study the dynamics of beliefs and intentions in Parameterized-
time Action Logic. In order to develop a coherence condition on belief and intention,
we separate strong beliefs from weak beliefs. Strong beliefs are independent from inten-
tions, while weak beliefs are obtained by adding intentions to strong beliefs and every-
thing that follows from that. We provide AGM-style postulates for the revision of strong
beliefs and intentions: strong belief revision may trigger intention revision, but intention
revision may only trigger revision of weak beliefs. After revision, the strong beliefs are
coherent with the intentions. We show in a representation theorem that a revision oper-
ator satisfying our postulates can be represented by a pre-order on interpretations of the
beliefs, together with a selection function for the intentions.

6.1 Introduction

In the previous chapter we developed Parameterized-time Action Logic, which is a logic
for reasoning about beliefs and actions in time. We developed a branching-time seman-
tics for the logic, axiomatized it, and proved it is sound and strongly complete. However,
this was only the first step of our final goal, namely to study the dynamics of beliefs and
intentions based on Shoham’s database perspective (see Chapter 5, Section 5.1 for a
more detailed explanation).

In this chapter we do so in the following way. First, where we limited ourselves to
developing a logic for the belief database of an agent in the previous chapter, we now
add an intention database to the system as well. We then separate strong beliefs from
weak beliefs as described in Chapter 5, Section 5.1. Strong beliefs are beliefs that occur
in the belief database, and they are independent of intentions. Weak beliefs are obtained
from strong beliefs by adding intentions to the strong beliefs, and everything that follows
from that. In this way, the weak beliefs represent the assumptions that an agent may use
to form new intentions. We then formalize a coherence condition on the beliefs and
intentions. This condition states that the agent weakly believes it is possible to jointly
perform all of its intended actions. The main technical result of this chapter is that we
develop a set of postulates for the joint revision of belief and intentions, and that we
prove a variation of the Katsuno and Mendelzon [KM91] representation theorem. To
this end, we define a revision operator that revises beliefs up to a specific time point. We
show that this leads to models of system behaviors which can be finitely generated, i.e.
be characterized by a single formula.

This chapter is organized as follows: In Section 6.2 we add an intention database to
the system, we separate strong and weak beliefs, and we propose a coherence condition
on beliefs and intentions. In Section 6.3 we then turn to the main topic of this part:

113

114 Chapter 6 The Dynamics of Beliefs and Intentions

the revision of beliefs and intentions. In Section 6.4 we study iterated revision, and in
Section 6.5 we discuss related work, open issues, and a conclusion.

6.2 Adding intentions

In the previous chapter we developed a logic for the belief database of Shoham’s database
perspective (Figure 5.1). We did not yet take intentions into account, which is what we
do in this section. Recall intentions are formalized as discrete atomic action intentions
of the form (a, t). We focus on two main tasks: separating beliefs depending on inten-
tions (weak beliefs) from those that are not (strong beliefs), and formalizing a coherence
condition on beliefs and intentions. These two tasks correspond to the two subsections
of this section.

6.2.1 Separating strong and weak beliefs

The idea behind strong beliefs (the terminology due to van der Hoek et al. [VdHW03])
is that they represent the agent’s ideas about what is inevitable, no matter how it would
act in the world. In our setting, a set of strong beliefs is a set of formulas starting either
with 30 or 20, and all consequences that follow from it. First, we define a language for
strong beliefs.

Definition 6.1 (Strong belief). The set of all of strong beliefs SB for L is inductively
defined by the following BNF grammar:

ϕ ::= 20ψ | ϕ∧ϕ | ¬ϕ,

where ψ ∈L . A strong belief is an element of SB.

We next provide some examples of strong beliefs for our running example.

Example 6.1 (Running example, Ctd.). Some examples of strong belief formulas are:

• 30(do(f ood)0∧¬do(cook)1)

• 30do(f ood)0∧30do(equip)1∧¬30(do(f ood)0∧do(equip)1)

• 30¬31do(cook)1

• 2030do(cook)1

Next we define a set of strong beliefs, which is generated from the set of all strong
beliefs, and closed under consequence.

Definition 6.2 (Set of strong beliefs). A set of strong beliefs SB is a subset of formulas
from SB, closed under consequence, i.e. SB =Cn(Σ) where Σ⊆ SB.

The following example shows that a set of strong beliefs may also contain formulas
which are not in SB, since they are closed under consequence.

6.2 Adding intentions 115

Example 6.2 (Set of strong beliefs). Let Σ = {¬30 p3,20q2} ⊂ SB, and let the set of
strong beliefs SB = Cn(Σ). From Axioms A1 and A2 we obtain ¬p3 ∈ SB, as well as
q2 ∈ SB.

The reader may already have noted that, semantically, strong beliefs are independent of
the specific path on which they are true. Indeed, strong beliefs are true in a tree rather
than on a single path. Therefore, if a model (consisting of a tree and a path) is a model
for a strong belief formula ϕ, then all possible models with the same tree are models of
the strong belief formula ϕ. We make this idea precise in the following definition.

Definition 6.3 (Set of models of strong beliefs (msb set)). A set of models of strong
beliefs MSB⊆M (i.e., an msb set) is a set of models satisfying the following condition:

If (T,π) ∈MSB, then (T,π′) ∈MSB for all π
′ ∈ T.

The set MSB contains all msb sets.

Definition 6.3 ensures that if some model (T,π) is in a set of models of a strong belief,
then all other models (T,π′) are also in this set. The following proposition shows a direct
correspondence between a set of strong beliefs and its models.

Proposition 6.1. Given a set of strong beliefs SB, the set of models of SB is an msb set,
i.e., Mod(SB) ∈MSB.

We now explain the semantics of strong beliefs models with our running example.

Example 6.3 (Running example (Ctd.)). Consider the tree T of Figure 5.2 and let π ∈
{π,π′,π′′}. The following statements hold:

• T,π |= 30(do(f ood)0∧¬do(cook)1)

• T,π |= 30do(f ood)0∧30do(equip)1∧¬30(do(f ood)0∧do(equip)1)

• T,π |= 30¬31do(cook)1

• T,π |= 2030do(cook)1

We obtain a belief-intention database by adding intentions to the strong beliefs. By
intentions we assume action-time pairs, and an intention database is a set of intentions.
We also add the constraint that at most one action is intended for a given time moment.

Definition 6.4 (Belief-Intention database). An intention (a, t) is a pair consisting of an
action a ∈ Act and a time point t.

An intention database I = {(a1, t1),(a2, t2), . . .} is a set of intentions such that no two
intentions exist at the same time point, i.e if i 6= j then ti 6= t j.

A belief-intention database (SB, I) consists of a set of strong beliefs SB closed under
consequence, i.e. SB =Cn(SB), and an intention database I.

We define weak beliefs by adding intentions to the strong beliefs, and closing the result
under consequence.

116 Chapter 6 The Dynamics of Beliefs and Intentions

Definition 6.5 (Weak Beliefs). Given a belief-intention database (SB, I), the weak be-
liefs are defined as follows:

WB(SB, I) =Cn(SB∪{do(a)t | (a, t) ∈ I}).

We provide an example for weak beliefs using our running example.

Example 6.4 (Running example (Ctd.)). Suppose the set SB contains strong beliefs de-
scribing the tree T of Figure 5.2. Some of the formulas in SB are:

• 30(do(f ood)0∧do(cook)1)

• 30do(equip)1

• ¬30do(f ood)0∧do(equip)1}.

Let I = {(f ood,0),(cook,1)}. Some examples of weak beliefs WB(SB, I) are:

• do(f ood)0∧do(cook)1

• ¬do(equip)1

• post(f ood)1∧ post(cook)2.

Note the model (T,π′) from Figure 5.2 is a model of WB(SB, I).

Note the difference between Example 6.3 and Example 6.4. Strong beliefs are true in
a tree, while weak beliefs depend on a path. In this way, weak beliefs are contingent
on the action executed on the actual path. We can thus understand adding intentions to
strong beliefs semantically by choosing a path in a tree.

Remark 4. Note that since weak beliefs contain strong beliefs with intentions, and ev-
erything following from that, they also contain postconditions of actions. For instance,
if I = {(a, t)} and SB = /0, then post(a)t ∈WB(SB, I). However, it does not mean that
preconditions of intended actions are believed as well, i.e. pre(a)t 6∈WB(SB, I). This is
what is ensured by Axiom A9 (see also remark 3).

6.2.2 The coherence condition on beliefs and intentions

The fact that postconditions of actions always hold on a path, but that preconditions may
not, is a direct implementation of our proposal that preconditions, unlike postconditions,
need not be believed when an action is intended. We might therefore think of our belief
model as, in some sense, one of “optimistic” or “imaginary” beliefs. On the other hand,
we do add a slightly weaker requirement, namely that it is considered possible to perform
all intended action. We thus require that the joint preconditions of all intended actions
not be disbelieved by the agent. This is our notion of coherence.

Definition 6.6 (Coherence). Given an intention database I = {(bt1, t1), . . . ,(btn, tn)} with
t1 < .. . < tn, let

Cohere(I) = 30
∨

ak∈Act:k 6∈{t1,...,tn}
ak=bk:k∈{t1,...,tn}

pre(at1,at1+1, . . . ,atn)t1.

6.2 Adding intentions 117

• For a given msb set MSB (definition 6.3), we say that (MSB, I) is coherent iff there
exists some m ∈MSB with m |=Cohere(I).

• For a given belief-intention database (SB, I), we say that it is coherent iff SB is
consistent with Cohere(I), i.e., SB 6` ¬Cohere(I).

• A pair (ψ, I) consisting of a strong belief formula ψ∈SB and an intention database
I is coherent iff ψ is consistent with I, i.e. ψ 6` ¬Cohere(I).1

Let us explain this definition with a simple example.

Example 6.5. Let Act = {a,b} and I = {(a,1),(b,3)}. Then,

Cohere(I) = 30
∨

x∈Act

pre(a,x,b)1 = 30(pre(a,a,b)1∨ pre(a,b,b)1).
2

Intuitively, intentions cohere with beliefs if the agent considers it possible to jointly
carry out all of the intended actions. This is a kind of minimal requirement on rational
balance between the two mental states.

In the next section we will consider the revision of belief-intention database. We will
require that a belief-intention database is coherent after revision.

Remark 5. A word is in order concerning this choice of coherence conditions. Consider
our example of Bobby intending to buy food at time 0. As we pointed out, it is not actually
necessary that Bobby believes it has sufficient money; only that it does not believe it does
not have sufficient money.

Anticipating our treatment of contingent beliefs, we can also ask, what can be Bobby’s
working assumptions about the future, upon adopting this intention? In so far as Bobby
is committing himself to this action, we may assume that it will buy food at time 0. If
we then consider the paths in our belief models on which this action is taken at time 0,
the postconditions will hold along all of them. However, to allow that the preconditions
may not yet be believed, we admit paths on which the preconditions do not hold. We
only require that they hold on some path in the set, so that Bobby cannot stray too far
from reality.

Indeed, this is arguably closer to how we reason about future actions. We often commit
to actions without explicitly considering the path that will lead us there. Eventually this
decision will have to be made, but there is nothing incoherent about glossing over these
details at the current moment. Bobby should assume it will have bought food at time
1 and can continue making plans about what it will do with the food after this. But it
should not assume the preconditions will hold until it has made further, specific plans
for bringing them about. And at the current time, Bobby may not even bother worrying
about it.

The next proposition shows a direct correspondence between a coherent belief-intention
database and the semantic counterpart.

1We will use this formulation in the next section when we represent a set of strong beliefs SB by a
single formula ψ.

2Our construction of preconditions over action sequences may lead to a coherence condition involving
a big disjunction. This is a drawback in terms of computational complexity. Alternatively, one may
explicitly denote the time of each precondition, e.g. pre(a,b)(t1,t2). We chose the former since it is closer
syntax of the other propositions, but the latter can be implemented straightforwardly.

118 Chapter 6 The Dynamics of Beliefs and Intentions

Proposition 6.2. For a given belief-intention database (SB, I),(SB, I) is coherent iff
(Mod(SB), I) is coherent.

We now apply the coherence condition to our running example.

Example 6.6 (Running example). Let (SB, I) be such that the strong beliefs are repre-
sented by the tree in Figure 6.13. We consider different choices for I:

• Let I = {(f ood,0),(cook,1)}. In this case, (Mod(SB), I) is coherent, since there
is some model m ∈Mod(SB) with m |=Cohere(I), i.e. m |= 30 pre(f ood,cook)0.
In fact, from pre(f ood,cook) ∈ v(s0), it follows that T,m |= pre(f ood,cook)0
holds for each model (T,m). From Proposition 6.2 it follows that (SB, I) is coher-
ent as well.

• Let I = {(f ood,0),(equip,1)}. In this case (Mod(SB), I) is not coherent, since
there is not m ∈ Mod(SB) with m |= 30 pre(f ood,cook)0. Again by Proposi-
tion 6.2 we obtain that (SB, I) is not coherent either.

t = 0 t = 1 t = 2

s0

{pre(f ood),
pre(f ood,cook)}

s1

{pre(equip)}
s2 {post(equip)}

s3

{pre(cook),
post(f ood)}

s4 {post(cook)}

s5

π

π′

π′′

nop

equip

food

cook

nop

Figure 6.1: The tree T of Figure 5.2 reprinted.

Naturally, if a set of intentions is coherent with a set of strong beliefs, then its subset is
coherent as well. This follows directly from the next lemma.

Lemma 6.1. if I′ ⊆ I, then Cohere(I) `Cohere(I′).

Next we show that a coherent belief-intention database implies joint consistency of be-
liefs and intentions.

Proposition 6.3. Given some belief-intention database (SB, I), if (SB, I) is coherent,
then WB(SB, I) is consistent.

Note the reverse direction of Proposition 6.3 does not hold. This is because of the
nonparallel we have drawn between believing in preconditions and believing in post-
conditions (see Remark 5).

3In other words, the trees in each model in the msb set of SB is equivalent with the tree in Figure 6.1.

6.3 Revision of beliefs and intentions 119

6.3 Revision of beliefs and intentions

Everything we did up until now has been to develop a static representation of beliefs
(previous chapter), intentions and their joint consistency (Section 6.2). In this section
we turn to the dynamic part of our databases by studying the revision of belief and
intention. We provide and motivate a set of revision postulates on a belief-intention
database (SB, I) in subsection 6.3.2, and we prove our main representation theorem in
subsection 6.3.3.

The difficulty of obtaining our result is two-fold:

• When revising a belief database that is bounded up to some time t with a strong
belief, we have to ensure that the resulting belief database is also bounded up to t,

• When revising a belief database we also have to ensure the new belief database
remains a strong belief.

Our solution is to bound both the syntax of PAL and the revision operator up to some
time t in the first subsection. In the second subsection we do the same for the semantics.

6.3.1 AGM belief revision

The AGM postulates [AGM85] formulate properties that should be satisfied by any (ra-
tional) revision operators defined on deductively closed sets of propositional formu-
las. [KM91] represent a belief set B as a propositional formula ψ such that B = {ϕ | ψ `
ϕ}. They define the following six postulates for revision on ψ and show that these are
equivalent to the eight AGM postulates:

(R1) ψ◦t ϕ implies ϕ

(R2) If ψ∧ϕ is satisfiable, then ψ◦t ϕ≡ ψ∧ϕ

(R3) If ϕ is satisfiable, then ψ◦t ϕ is also satisfiable

(R4) If ψ≡ ψ′ and ϕ≡ ϕ′, then ψ◦t ϕ≡ ψ′ ◦t ϕ′

(R5) (ψ◦t ϕ)∧ϕ′ implies ψ◦t (ϕ∧ϕ′)

(R6) If (ψ◦t ϕ)∧ϕ′ is satisfiable, then ψ◦t (ϕ∧ϕ′) implies (ψ◦t ϕ)∧ϕ′

Given a set I of all interpretations over some propositional language, they define a faith-
ful assignment as a function that assigns each ψ to a pre-order ≤ψ on models satisfying
the following three conditions:

1. If I, I′ ∈Mod(ψ), then I <ψ I′ does not hold.

2. If I ∈Mod(ψ) and I′ 6∈Mod(ψ), then I <ψ I′ holds.

3. If ψ≡ φ, then ≤ψ=≤φ.

120 Chapter 6 The Dynamics of Beliefs and Intentions

They show in a representation theorem that a revision operator ◦ satisfies postulates
(R1)-(R6) iff there exists a faithful assignment that maps each formula ψ to a total pre-
order ≤ψ such that

Mod(ψ◦ϕ) = min(Mod(ϕ),≤ψ).

6.3.2 Revision postulates

Recall from Section 6.1 that we aim to prove a representation theorem comparable to
that of Katsuno and Mendelzon [KM91]. Therefore, we follow their convention to fix
a way of representing a belief set SB consisting of strong beliefs by a propositional
formula ψ such that SB = {ϕ | ψ ` ϕ}. One of the main difficulties in this respect is that
time in PAL is infinite in the future, so it is generally not possible to represent SB closed
under consequence by a single formula ψ, since this may potentially lead to an infinite
conjunction. Therefore, we cannot prove the Katsuno and Mendelzon representation
theorem directly. In this section, we define a bounded revision function and we restrict
the syntax of PAL up to a specific time point. Restriction of a set of formulas up to a
certain time point is defined as follows.

Definition 6.7 (t-restriction). Suppose some t ∈ N. Let max t(ϕ) denote the maximal
time point occurring in ϕ. Let Formt = {ϕ∈L |max t(ϕ)≤ t} and Belt = {Cl(S) | S⊆
Formt}.
A set of strong beliefs bounded up to t, denoted SB|t , has the following two properties:

• SB|t ⊆ Belt ,

• SB|t is a set of strong beliefs.

We next define some notation that we use in the rest of this section.

Definition 6.8. We use the following conventions:

• By slight abuse of terminology, a pair (ψ, I) consisting of a strong belief formula
ψ and an intention database I is also called a belief-intention database,

• BI denotes the set of all belief-intention databases,

• I denotes the set of all intentions,

• ID denotes the set of all intention databases.

• ε is the special “empty” intention.

Recall SB is the set of all strong beliefs (Definition 6.1). We denote BI,SB,I, and ID
bounded up to t with respectively BI|t ,SB|t ,I|t , and ID|t . However, if the restriction is
clear from context, we may omit the superscript notation.

In the next definition we define a bounded revision function ∗t revising a belief-intention
database (ψ, I) with a tuple (ϕ, i) consisting of a strong belief ϕ and an intention i,
denoted (ψ, I)∗t (ϕ, i), where t is the maximal time point occurring in ψ, I,ϕ, and i.

6.3 Revision of beliefs and intentions 121

Remark 6. We will define a single revision function, revising by a pair (ϕ, i). Our
approach allows one to define separate revision as well:

• Revising by (ϕ,ε) mirrors revising by a strong belief ϕ and no intention,

• Revising by (>, i) mirrors revising by no belief and an intention i.

We will show in example 6.8 that there are situations in which it is more desirable to
revise with a pair (ϕ, i) instead of first revising with (ϕ,ε) and then with (>, i), since it
avoids throwing away intentions unnecessarily.

Definition 6.9 (Belief-intention revision function). A belief-intention revision function
∗t : BI× (SB× I)→ BI maps a belief-intention database, a strong belief formula, and
an intention— all bounded up to t— to a belief-intention database bounded up to t such
that if,
(ψ, I)∗t (ϕ, i) = (ψ′, I′),
(ψ2, I2)∗t (ϕ2, i2) = (ψ′2, I

′
2),

then following postulates hold:
(P1) ψ′ implies ϕ.
(P2) If ψ∧ϕ is satisfiable, then ψ′ ≡ ψ∧ϕ.
(P3) If ϕ is satisfiable, then ψ′ is also satisfiable.
(P4) If ψ≡ ψ2 and ϕ≡ ϕ2 then ψ′ ≡ ψ′2.
(P5) If ψ≡ ψ2 and ϕ2 ≡ ϕ∧ϕ′ then ψ′∧ϕ′ implies ψ′2.
(P6) If ψ≡ ψ2, ϕ2 ≡ ϕ∧ϕ′, and ψ′∧ϕ′ is satisfiable,

then ψ′2 implies ψ′∧ϕ′.
(P7) If ψ is consistent, (ψ′, I′) is coherent.
(P8) If (ψ′,{i}) is coherent, then i ∈ I′.
(P9) If (ψ′, I∪{i}) is coherent, then I∪{i} ⊆ I′.
(P10) I′ ⊆ I∪{i}.
(P11) If I = I2, i = i2, and ψ′ ≡ ψ′2, then I′ = I′2.
(P12) For all I′′ with I′ ⊂ I′′ ⊆ I∪{i}:(ψ′, I′′) is not coherent.

Postulates (P1)-(P6) are the [KM91] postulates in our setting, which are equivalent to
the AGM postulates. They also state that the revision of strong beliefs does not depend
on the intentions. This can also be witnessed by the fact that all postulates involving
intentions, i.e. (P7)-(P12), only use the revised strong belief formula ψ′. Therefore,
revising strong beliefs does not depend on which intentions an agent had, or which
intention it revises with. However, revising intentions does have an effect on the weak
beliefs (see the last paragraph of example 6.7). In other words, the procedures runs as
follows:

1. Revise strong beliefs (P1)-(P6),

2. Revise intentions (P7)-(P12), possibly revising weak beliefs as well.

Postulate (P7) states that the outcome of a revision should be coherent. Postulate (P8)
states that the new intention i take precedence over all other current intentions; if pos-
sible, it should be added, even if all current intentions have to be discarded. It is thus
comparable to the success postulate in AGM, albeit slightly weaker. Postulate (P9) and

122 Chapter 6 The Dynamics of Beliefs and Intentions

(P10) together state that if it is possible to simply add the intention, then this is the only
change that is made. These two postulates are comparable to inclusion and vacuity of
AGM. Postulate (P11) states that if we revise with the same i but with a different belief,
and we end up with the same belief in both cases, then we also end up with the same
intentions. This postulates plays a crucial role in the interplay between beliefs and inten-
tions, which we show in more detail in example 6.9. Finally, (P12) states that we do not
discard intentions unnecessarily. This last postulate is a kind of maximality requirement,
and is comparable to the parsimony requirement introduced by [GKPW10].

We now discuss our revision function with several example.

Example 6.7 (Running example (adding an intention)). Suppose a belief-intention database
(ψ, I) such that all models in Mod(ψ) are the same as the partial model in Figure 6.1 up
to t = 2 and suppose that I = {(f ood,0),(cook,1)}. That is, Bobby has the intention to
buy food at time 0 and then to cook at time 1. Suppose now Bobby changes its intention
to buy cleaning equipment at time 1. Formally:

(ψ, I)∗1 (>,(equip,1)) = (ψ, I′).

First note (ψ, I∪{(equip,1)}) is not coherent because no two intentions can occur at the
same time moment. Moreover, since (ψ,(equip,1)) is coherent, from (P8) and (P9) we
obtain (equip,1)∈ I′. Furthermore, from (P10) we have that I′⊆{(f ood,0),(cook,1),(equip,1)}.
Finally, (ψ,{(f ood,0),(equip,1)}) is not coherent either, since the agent does not be-
lieve the preconditions of buying food and buying equipment are true along a single path.
Combining this gives I′ = {(equip,1)} as the only coherent outcome. Thus, Bobby no
longer intends to buy food and to cook, but to buy cleaning equipment instead.

Note that, although the strong beliefs didn’t change after revising with the new intention,
the weak beliefs did change. For example, post(f ood)1 ∈WB(ψ, I) \WB(ψ, I′) and
post(equip)2 ∈WB(ψ, I′)\WB(ψ, I).

The revision function ∗t takes a tuple (ϕ, i) as input, and the postulates (P1)-(P7) ensure
that revision of strong beliefs occurs prior to the revision of intentions. Therefore, it
may seem plausible that revising with (ϕ, i) is the same as first revising with (ϕ,ε) and
then with (>, ı). In other words, the following postulate seems to follow:

If (ψ, I)∗t (ϕ, i) = (ψ′, I′)
and ((ψ, I)∗t (ϕ,ε))∗t (>, i) = (ψ′′, I′′), (P13*)

then ψ
′ ≡ ψ

′′ and I′ = I′′.

However, this property does not follow from (P1)-(P12), and we show in the following
example that adding the postulate would in fact conflict with the maximality postulate
(P12).

Example 6.8 (Joint vs separate revision). Suppose some belief-intention database (ψ, I)
with beliefs up to t = 2 corresponding to the model on the left of Figure 6.2. It is possible
to go to the dentist (dentist) or to stay at work (work), and after that to go eating (eating)
or go to the movies (movies).

Before revision, the intentions are I = {(dentist,0),(eat,1)} (left image of Figure 6.2,
intentions shown as bold lines).

6.3 Revision of beliefs and intentions 123

eat

movie
work

eat

movie

dentist

eat

movie
work

movie

dentist

Figure 6.2: Left: Partial model of strong beliefs ψ of agent (ψ, I) with I = {(dentist,0),(eat,1)}
(bold lines). Right: Revised strong beliefs of agent after learning it is not possible to eat (eat)
after the dentist (dentist).

Suppose now the beliefs are revised with the fact that it is not possible to go eating after
going to the dentist (ϕ) and with the intention to go to the movie at time 1 (i=(movie,1)).
The resulting strong beliefs after revising with ϕ are shown on the right of Figure 6.2.

Let us analyze two ways of revising this information:

• Suppose (ψ, I) is revised with both the new belief and the new intention. That is,

(ψ, I)∗2 (ϕ, i) = (ψ′, I′).

Both (ψ′,{(dentist,0),(movie,1)}) and (ψ′,{(movie,1)}) are coherent, so by the
maximality postulate (P12), I′ = {(dentist,0),(movie,1)}. Hence, the new inten-
tions are to go to the dentist and then to go to the movie.

• Suppose beliefs are revised prior to intentions. That is,

(ψ, I)∗2 (ϕ,ε) = (ψ′, I)

(ψ′, I)∗2 (>, i) = (ψ′, I′).

Now, since (ψ′,{(dentist,0)}) and (ψ′,{(eating,1)}) are both coherent, we either
have I = {(dentist,0)} or I = {(eating,1)}. Suppose that I = {(eating,1)}. In
that case, since (ψ′,{(eating,1),(movie,1)} is incoherent, we obtain I′= {(movie,1)}
by the postulates (P8) and (P10).

Thus, (P13*) doesn’t hold. We see that revising separately allows a choice between
the intention to go eating or to go to the dentist after revising beliefs. When choosing
to go eating, the intention again has to be discarded because it is conflicting with the
new intention to go to the movie. In joint revision, this is not the case since the choice
between eating or the dentist can be made in light of the new incoming intention, and
the maximal set can be chosen.

We use the next example to explain postulate P11.

Example 6.9. Suppose

(ψ, I)∗t (ϕ, i) = (ψ′, I′)
(ψ2, I)∗t (ϕ2, i) = (ψ′, I′2),

124 Chapter 6 The Dynamics of Beliefs and Intentions

nop
spag

co f f ee
nopbeer

nop

co f f ee
spag

nop

Figure 6.3: Tree representing Bobby’s strong beliefs ψ′ up to time t = 2 (example 6.9)

then postulate P11 ensures I′ = I′2. In words, this means that whenever we revise an
intention database I by an intention i and we obtain the same strong beliefs ψ′, then the
new intention database should also be the same.

Suppose for instance our household robot Bobby has the intention database I = {(beer,0),(spag,1)},
i.e. it intends to buy beer at time 0 and to buy spaghetti at time 1. Suppose now Bobby
learns it only has sufficient money to either buy beer and spaghetti, or beer and coffee.
Bobby’s beliefs ψ′ are represented up to time 2 by the tree in Figure 6.3. If Bobby also
adopts the intention to buy coffee at time 3, i.e. i = (co f f ee,3), then it should either
drop (beer,0) or (spag,1) in order to incorporate i. Postulate P11 ensures that this
choice is independent of its beliefs prior to revising them.

6.3.3 Representation theorem

In this subsection we present the main technical result of this thesis. We characterize all
revision schemes satisfying (P1)-(P12) in terms of minimal change with respect to an
ordering among interpretations and a selection function accommodating new intentions
while restoring coherence.

In the previous subsection we bounded various sets of formulas up to some time point
t. We now do the same for models. We bound models up to t, which means that all the
paths in the model are “cut off” at t.

Definition 6.10 (t-bounded model). Suppose some model m = (T,π).

• A t-bounded path π|t is defined from a path π in T as π|t = (π0, . . . ,πt).

• A t-bounded model m|t = (T |t ,π|t) is a pair where T |t = {π|t | π ∈ T}.

We denote the set of all t-bounded models with M|t .

Recall we defined a set of models of strong beliefs MSB as an msb set (Definition 6.3).
A belief database SB consists of a set of strong beliefs, and we showed in Proposition 6.1
that the set of models of SB is an msb set, i.e. Mod(SB) ∈MSB, where MSB is the set
containing all msb sets.

In order to represent revision semantically, we define a t-bounded version of msb sets as
well.

6.3 Revision of beliefs and intentions 125

Definition 6.11 (t-bounded msb set). Given an msb set MSB (Definition 6.3), the t-
bounded msb set contains all t-bounded models of MSB, i.e.

MSB|t = {m|t | m ∈MSB}.

Given an intention database I, we define a selection function γt
I that tries to accommodate

a new intention based on strong beliefs. The selection function specifies preferences on
which intention an agent would like to keep in the presence of the new beliefs.

Definition 6.12 (Selection Function). Given an intention database I, a selection func-
tion γt

I : MSB× I→ ID maps an msb set (definition 6.3) and an intention to an updated
intention database—all bounded up to t— such that if γt

I(MSB|t ,{i}) = I′, then:

1. (MSB|t , I′) is coherent.

2. If (MSB|t ,{i}) is coherent, then i ∈ I′.

3. If (MSB|t , I∪{i}) is coherent, then I∪{i} ⊆ I′.

4. I′ ⊆ I∪{i}.

5. For all I′′ with I′ ⊂ I′′ ⊆ I∪{i}:(MSB|t , I′′) is not coherent.

The five conditions on the selection function are in direct correspondence with postu-
lates (P7)-(P10), (P12) of the agent revision function ∗t . Postulate (P11) doesn’t have
a corresponding condition in the definition above, but it is represented in the represen-
tation theorem below (Theorem 6.1). In Condition 2 of the representation theorem, the
selection function takes Mod(ψ′) as its first argument, which are the revised beliefs.
This ensures the outcome of the intention revision process only depends on the new be-
liefs, the old intention database, and the incoming intention. In other words, it does not
depend on the previous beliefs, or the belief that is used in revision. This is exactly what
postulate (P11) states as well.

Remark 7. We will show in Corollary 6.1 below that it is possible to represent each set
of strong beliefs SB (Definition 6.1) by a formula ψ such that Cn(SB) =Cn(ψ). Using
this lemma, we adapt the definition of a Katsuno and Mendelzon faithful assignment
below.

Katsuno and Mendelzon[KM91] define a faithful assignment from a belief formula to a
pre-order over models. Since we are also considering intentions, we extend this defini-
tion such that it also maps intentions databases to selection functions.

Definition 6.13 (Faithful assignment). A faithful assignment is a function that assigns to
each strong belief formula ψ ∈ SB|t a total pre-order ≤t

ψ over M and to each intention
database I ∈ D|t a selection function γt

I and satisfies the following conditions:

1. If m1,m2 ∈Mod(ψ), then m1 ≤t
ψ m2 and m2 ≤t

ψ m1.

2. If m1 ∈Mod(ψ) and m2 6∈Mod(ψ), then m1 < m2.

3. If ψ≡ φ, then ≤t
ψ=≤t

φ
.

126 Chapter 6 The Dynamics of Beliefs and Intentions

4. If T |t = T |t2 , then (T,π)≤t
ψ (T2,π2) and (T2,π2)≤t

ψ (T,π).

Conditions 1 to 3 on the faithful assignment are the same as the conditions that Katsuno
and Mendelzon put on a faithful assignment. Condition 4 ensures the two difficulties we
pointed out in the beginning of this subsection are handled correctly:

• It ensures we do not distinguish between models in the total pre-order ≤t
ψ whose

trees are the same up to time t. This is essentially what is represented in the
revision function by bounding the all input of the revision function ∗t up to t.

• Moreover, ≤t
ψ does not distinguish between models obtained by selecting two

different paths from the same tree. In other words, it ensures that msb sets (sets
of models of a strong belief) remain in the same ordering. This corresponds to
the fact that we are using strong belief formulas in the revision, which do not
distinguish between different paths in the same tree as well.

We are now ready to state our main theorem.

Theorem 6.1 (Representation Theorem). A belief-intention revision operator ∗t satisfies
postulates (P1)-(P12) iff there exists a faithful assignment that maps each ψ to a total
pre-order ≤t

ψ and each I to a selection function γt
I such that if (ψ, I) ∗t (ϕ, i) = (ψ′, I′),

then:

1. Mod(ψ′) = min(Mod(ϕ),≤t
ψ)

2. I′ = γt
I(Mod(ψ′), i)

We will use the remainder of this subsection to prove the representation theorem above.
We first show the number of t-bounded models is finite.

Lemma 6.2. For each t ∈ N,M|t is finite.

Proof. Suppose some t ∈ N. Since actions are deterministic and there are finitely many
actions in our logic, each state has a finite number of successor states. Moreover, since
there are finitely many propositions in our language, the number of possible valuations
of the states is finite as well. Therefore, the number of models in M|t is finite.

The following lemma obtains a correspondence between semantic consequence of two
models equivalent up to t. The proof is by induction on the depth of the formula.

Lemma 6.3. For each ϕ ∈L |t and models m1,m′2 ∈M, if m|t1 = m|t2 , then m1 |= ϕ iff
m2 |= ϕ.

Let Ext(MSB|t) be the set of all possible extensions of a t-bounded msb set MSB|t to
models, i.e.

Ext(MSB|t) = {m ∈M | m|t ∈MSB|t}.
We next show that we can represent MSB|t by a single strong belief formula using
Ext(MSB|t).

Lemma 6.4. Given a t-bounded msb set MSB|t , there exists a strong belief formula
f orm(MSB|t) ∈ SB such that Mod(f orm(MSB|t)) = Ext(MSB|t).

6.4 Iterated revision 127

The following corollary shows we can represent a belief database consisting of strong
beliefs up to some time t with a single formula.

Corollary 6.1. Given a t-bounded set of strong beliefs SB|t , there exists a strong belief
formula ψ ∈ SB such that SB|t = {ϕ | ψ ` ϕ}.

6.4 Iterated revision

Until now we only considered single-step revision of beliefs and intentions. In future
work, we aim to develop a full account of iterated revision of belief and intention. In
this section, we already give a preliminary account of iterated revision for strong beliefs.

In order to model iterated revision of strong beliefs we follow the approach of Darwiche
and Pearl [DP97]. They observe that the AGM postulates are too permissive to enforce
plausible iterated revision. In order to remedy this, they suggest the following changes:

• Instead of performing revision on a propositional formula, perform revision on an
abstract object called an epistemic state Ψ, which contains the entire information
needed for coherent reasoning.

• Postulate (R4) is weakened as follows:

(R*4) If Ψ = Ψ′ and ϕ≡ ϕ′, then Ψ◦t ϕ≡Ψ′ ◦t ϕ′

• The following four desirable postulates are added for iterated revision:

(C1) If ϕ |= ϕ′, then (Ψ◦ϕ′)◦ϕ≡Ψ◦ϕ.

(C2) If ϕ |= ¬ϕ′, then (Ψ◦ϕ′)◦ϕ≡Ψ◦ϕ.

(C3) If Ψ◦ϕ |= ϕ′, then (Ψ◦ϕ′)◦ϕ |= ϕ′.

(C4) If Ψ◦ϕ 6|= ¬ϕ′, then (Ψ◦ϕ′)◦ϕ 6|= ¬ϕ′

We refer to the Darwiche and Pearl postulates defined on epistemic states as (R*1)-
(R*6). When switching from belief revision on a belief state to belief revision on an
epistemic state the definition of a faithful assignment should be adopted accordingly.
We will do this now for our setting. In our setting, epistemic states contain strong belief
sets. Note that Ψ stands for Bel(Ψ) whenever it is embedded in a propositional formula,
and that Bel(Ψ) is thus a set of strong beliefs.

Definition 6.14 (Faithful assignment on epistemic states). A t-bounded faithful assign-
ment on epistemic states maps each epistemic state Ψ with Bel(Ψ) from SB, to a total
pre-order ≤t

Ψ
on all models such that:

1. If m1,m2 |= Ψ, then m1 ≤t
Ψ

m2 and m2 ≤t
Ψ

m1

2. If m1 |= Ψ and m1 6|= Ψ, then m1 <
t
Ψ

m2

3. If Ψ = Φ, then ≤Ψ=≤Φ

4. If T |t = T |t2 , then (T,π)≤t
Ψ
(T2,π2) and (T2,π2)≤t

Ψ
(T,π).

128 Chapter 6 The Dynamics of Beliefs and Intentions

The next representation theorem is similar to Theorem 6.1, but it uses the Darwiche and
Pearl postulates on epistemic states and the t-bounded faithful assignment on epistemic
states that we defined above. The proof is a straightforward modification of the proof of
Theorem 6.1.

Theorem 6.2 (Representation Theorem). A t-bounded revision operator ◦t satisfies pos-
tulates (R*1)-(R*6) precisely when there exists a t-bounded faithful assignment on epis-
temic states that maps each epistemic state Ψ to a total pre-order ≤t

Ψ
such that

Mod(Ψ◦t ϕ) = min(Mod(ϕ),≤t
Ψ)

Theorem 6.3. Suppose that a t-bounded revision operator on epistemic states satisfies
postulates (R*1)-(R*6). The operator satisfies postulates (C1)-(C4) iff the operator and
its corresponding faithful assignment satisfy:

CR1 If m1 |= ϕ and m2 |= ϕ, then m1 ≤t
Ψ

m2 iff m1 ≤t
Ψ◦ϕ m2.

CR2 If m1 6|= ϕ and m2 6|= ϕ, then m1 ≤t
Ψ

m2 iff m1 ≤t
Ψ◦ϕ m2.

CR3 If m1 |= ϕ, m2 6|= ϕ and m1 <
t
Ψ

m2, then m1 <
t
Ψ◦ϕ m2.

CR4 If m1 |= ϕ, m2 6|= ϕ and m1 ≤t
Ψ

m2, then m1 ≤t
Ψ◦ϕ m2.

We provide a proof sketch here, and the full proof can be found in Appendix D.

Proof Sketch. (⇐): Identical to Darwiche and Pearl.
(⇒): We prove (C1)⇒ (CR1), the proofs for the other postulates are similar. Sup-
pose that (C1) holds and m,m′ |= ϕ. Let α = f orm(M|t ,M|t ′). By Lemma Lemma ??,
Mod(α) = Ext(M|t)∪ Ext(M|t ′). If m′′ ∈ Ext(M|t), then M|t = M|t ′′, so by Lemma
Lemma 6.3 we obtain m′′ |= ϕ. Similarly, if m′′ ∈ Ext(M|t ′), then m′′ |= ϕ, so α |= ϕ. By
(C1), (Ψ◦t ϕ)◦t α≡Ψ◦t α. In other words, min(Mod(α),≤t

Ψ◦tϕ) = min(Mod(α),≤t
Ψ
).

Consequently, m≤t
Ψ◦tϕ m′ iff m≤t

Ψ
m′.

6.5 Discussion

6.5.1 Related work

Philosophy of mind

Before the early 1990s most work on intention was done by philosophers. The dominant
view prior to the 1980s was that fundamental mental states included belief-like attitudes
such as belief and knowledge on the one hand, and desire-like attitudes such as desires
and preferences on the other [Dav63]. These capture the “two directions of fit” between
world and mind [Sea83]. It was generally believed that intentions could be reduced to
these more basic mental states. For instance, an intention can be thought of as a complex
kind of belief: an intention to ϕ at some time t might be a belief that the agent will ϕ

at t, perhaps by virtue of this very belief [Hol08]. This belief-desire model of the mind
was also common in decision theory in the spirit of Savage [Sav72] (see also Chapter

6.5 Discussion 129

2, Section 2.5.2), as well as in artificial intelligence. The basic idea underlying all this
is that rational action amounts to what leads to the most desirable outcome, given the
agent’s beliefs about the world and preferences about how it ought to be.

In the mid 1980s Michael Bratman wrote the book “Intentions, plans, and practical rea-
son” [Bra87], which would turn out to be very influential in both philosophy and in arti-
ficial intelligence. In the book, he argued convincingly that intentions cannot be reduced
to any “more basic” mental states, but that intentions must be taken as basic themselves.
His argument is complex, and difficult to understand for non-philosophers, but the fun-
damental ideas are not, and are in fact very simple. Intentions are subject to their own
set of norms, which cannot be reduced to those for beliefs or desires. For instance, some
norms of intention consistency definitely do not apply to desires: if someone knows that
ϕ and ψ are mutually inconsistent, it is irrational to intend ϕ and to ψ simultaneously,
but it would not be irrational to desire both ϕ and ψ.4

Another example of a norm of intentions, and one which has been very influential in
computer science, is the idea that intentions constrain further practical reasoning in a
characteristic way. Bratman (and others) have argued that if someone intends to ϕ, that
gives her a pro tanto reason to ϕ, even in the face of evidence that she ought not ϕ.
In other words, intentions have some amount of inertia that beliefs and desires do not
have. An agent is more deeply committed to its intentions that to its beliefs. If we think
of intentions as making up a plan, then reconsidering an intention potentially requires
revising an entire plan, which can be computationally expensive and problematic in
real time. A consequence of this relative resistance to revision is that intentions can
be very useful for resource-bounded agents who have to select appropriate actions at
different times. Both by adopting appropriate policies that can apply at different times to
similar decision problems, and by devising complex plans which can easily be followed
when computation time is limited, an agent with intentions is able to avoid performing
complex computations every time a new decision problem arises. Observations such as
those above are common knowledge in artificial intelligence by now, but it is important
to realize there is a well explored philosophical foundation underlying them.

Artificial Intelligence

In the 1990s there was a crucial moment of cross-pollination between philosophy of
mind and artificial intelligence. Inspired by the philosophical literature, research in
artificial intelligence began to explore intentions. One of the first attempts of what was
later known as the belief-desire-intention architecture was in a paper by Bratman, Israel,
and Pollack [BIP88], which systematized many aspects of the view laid out in Bratman’s
book [Bra87], including flowcharts and some suggestions for implementations. Most
importantly, it served as a call for other researcher to investigate these matters more
systematically and formally.

One of the most well-known and first attempts of a formalization of intention revision
was by Cohen and Levesque [CL90a]. They developed a formal logical language, in-
cluding modal operators for mental state such as “belief” and “having a goal”, for tem-
poral expressions, and for descriptions of events such as “A happens” or “x did action

4Some recent philosophers in fact argue that this norm on intentions can be derived from a norm on
consistent of beliefs, but this remains a point of debate (see for instance Harman [Har76]).

130 Chapter 6 The Dynamics of Beliefs and Intentions

a”. The main point of the paper is to define a useful notion of intention. To this end
they first define a P-GOAL, or persistent goal, which is a goal p that one beliefs now
not to hold, and which will cease to be a goal as soon as either the agent believes p will
never hold, or the agent comes to believe p is true. Intending to take an action a is then
defined in terms of a P-GOAL for agent x [CL90a, p.245]:

INTEND(x,a) := (P-GOALx[DONEx(BELx(HAPPENSa))?;a]).

Unpacking this, agent x intends to a just in case x has a persistent goal to ensure that
x will believe a will be carried out, up until a is in fact carried out. They also define
“intending to bring about some state of affairs”, and show their approaches solves the
“Little Nell” problem and avoid the “Dentist Problem” [Bra87].

While Cohen and Levesque’s approach is much cited, it is fair to say that it is rather com-
plicated. Some early criticisms of technical details can be found in [Sin92b]. In Shoham
and Leyton-Brown’s textbook the approach is called “the road to hell” [SLB08]. Due to
the complexity of the logic, mathematical properties such as axiomatizability, decidabil-
ity and complexity of fragments were never investigated. None of the BDI logics that
were introduced subsequently adapted Cohen and Levesque’s four steps definition of
intention and instead considered intentions to be primitive. Moreover, while Cohen and
Levesque’s provide some criteria for the abandonment of intentions through the notion
of rational balance (forbidding to intend something that is true or believed to be impos-
sible to achieve), it does not further analyze the ’other reasons’ for which a persistent
goal is abandoned. More details on these critiques can be found in a recent articles by
Herzig et al. [HLPX16].

Some of Cohen and Levesque’s shortcomings were corrected to an extent in subsequent
work. For instance, Rao and Georgeff’s approach [RG91] offers an alternative, and
arguably simpler, formalism based on CTL. Shoham [Sho09] argues that one of the
most fundamental flaws in all such approaches is not being sufficiently grounded in a
computational setting, and as a result living in the no-man-land between philosophy
and computer science. Shoham further developed these ideas with Jacob Banks, one
of his PhD students, and behavioral economist Dan Ariely in the intelligent calendar
application Timeful, which attracted over $6.8 million in funding and was acquired by
Google in 20155, who aim to integrate it into their Calendar applications. As Shoham
[Sho16] says himself: “The point of the story is there is a direct link between the original
journal paper and the ultimate success of the company.” (p.47) Thus, it seems clear that
his philosophical proposal has lead to some success on the practical side. In this paper,
we investigate whether his proposal can lead to interesting theoretical insights as well.

There exists previous work on intention dynamics, that is, how intentions change over
time. van der Hoek, Jamroga, and Wooldridge [vdHJW07] (see also [Woo00] and [WP98])
explore a system similar to Rao and Georgeff’s with representations of beliefs, desires,
and intentions separately, including a specific module for practical reasoning; they pro-
pose how to revise intentions together with beliefs. Grant et al. [GKPW10] continue
this line of work, offering postulates for intention revision (similar to our contribu-
tion). Lorini and Herzig [LH08] introduce a logic of intention with modal operators
for attempt, tacking the question of when an agent’s intentions translate into an actual

5http://venturebeat.com/2015/05/04/google-acquires-scheduling-app-timeful-and-plans-to-integrate-
it-into-google-apps/

6.5 Discussion 131

attempted action. Finally, Shapiro et al. [SSTC12] also explore intention revision, work-
ing in a setting with complex hierarchical plans.

6.5.2 Open issues

There are a large number of directions for future research. Shoham [Sho09] give some
pointers as well, some of which we have conducted some preliminary research already.
We next discuss various directions and we explain what we have done for it so far.

Going beyond atomic intentions

In our approach, we model revision of atomic intentions, putting more structured inten-
tions to the side. However, recently Herzig et al. [HLPX16] argued convincingly that an
important element of intentions, namely the refinement of intentions, has not received
much attention in the literature. Subsequently Herzig et al. [HPXZ16] develop a formal
framework for the refinement of intentions, which is based on Shoham’s database per-
spective as well. It thus seems that our approach is a good fit with their, and it would be
interesting to see whether we could obtain a similar result for revision in their framework
as we did in ours.

Developing a quantitative (“probabilistic”) theory of intention

Most of the work described above, including our own contributions, is anchored in logic.
Indeed, intention like some of its cousins, belief, desire, knowledge, etc. naturally lends
itself to logical treatment. However, at least in the case of belief, logical models have
long been superseded in popularity by quantitative models, and in particular Bayesian
methods for reasoning about partial belief are currently dominant in both philosophy and
computer science (not to mention psychology, economics, and other social sciences).

We have conducted some preliminary research in this direction [vZI15], which we
briefly summarize here. Our work build on earlier work in the BDI literature by Kinny
and Georgeff [SWP04]. We present a theoretical framework for the intention recon-
sideration problem in Markov Decision Processes, in the same spirit as much work on
metareasoning. This involves the construction of a meta-level Markov Decision Process
in which the two actions are ‘think’ or ‘act’.

Theoretical Framework We formalize intention reconsideration as a metareasoning
problem. At each time step, the agent faces a choice between two meta-level actions:
acting (i.e., executing the optimal action for the current decision problem, based on
the current plan) or deliberating (i.e., recomputing a new plan). We assume that the
agent’s environment is inherently dynamic, potentially changing at each time step. As
a result, some plan that may be optimal at a certain time may no longer be optimal, or
worse, may not be executable at a later time moment. We formalize the sequential de-
cision problem as an MDP (S,A,T,R), where S is a set of states, A is a set of actions,
T : S×A× S→ [0,1] is a transition function, and R : S×A× S→ R is a reward func-
tion. An agent’s view on the world is captured by a scenario σ = (S,A,T,R,λ), where
(S,A,T,R) is an MDP, and λ ∈ S is the agent’s location in the MDP. At any given time

132 Chapter 6 The Dynamics of Beliefs and Intentions

the agent also maintains a policy, or plan, π : S′→ A′ for some set of states S′ and set
of actions A′, which may or may not equal S and A. Thus, the domain and range of the
agent’s policy may not even coincide with the current set of states and actions.

We also assume an agent might have a memory store µ, which in the most general case
simply consists of all previous scenario/plan pairs: µ= 〈〈σ1,π1〉, . . . ,〈σn−1,πn−1〉〉. (We
will typically be interested in agents with significantly less memory capacity.) Summa-
rizing, an agent’s overall state (σ,π,µ) consists of a scenario σ, a plan π, and a memory
µ.

Meta-Level Actions: Think or Act If the environment were static, then there would be
no reason to revise a perfectly good plan.6 However, environments are of course rarely
static. States may become unreachable, new states may appear, and both utilities and
probabilities may change. This raises the question of plan reconsideration. We assume
that at each time moment, an agent has a choice between two meta-level actions, namely
whether to act or to think (deliberate). When the agent decides to act, it will attempt the
optimal action according to the current plan. When the agent decides to think, it will
recompute a new plan based on the current MDP. The cost of deliberation can either
be charged directly, or can be captured indirectly by opportunity cost (missing out on
potentially rewarding actions).

The Dynamics of the Environment An environment specifies how a state s = 〈σ,π,µ〉,
and a choice of meta-decision α ∈ {think,act}, determine (in general stochastically, ac-
cording to Pd and Pa) a new state s′ = 〈σ′,π′,µ′〉:

〈σ,π,µ〉 α−→ 〈σ′,π′,µ′〉

• µ′ = 〈〈σ1,π1〉, . . . ,〈σn−1,πn−1〉,〈σ,π〉〉;

• if α = think:

– σ′ is some perturbation of σ: σ′ ∼ Pd(· | σ).
– π′ is a new policy for σ.

• if α = act:

– σ′ is a noisy result of taking action a = π(λ): σ′ ∼ Pa(· | σ).
– π′ = π.

Let S be the set of all possible environment states, which are the scenarios that we
introduced in the first subsection, and let A be the set of all possible actions. Let us
assume we have specified concrete perturbation functions Pd and Pa for a ∈ A . We can
lift these to a general transition function T : S ×{think,act}×S → [0,1], so that

T (s,α,s′) =

Pd(σ

′ | σ) if α = think and π′ is the revised plan for σ

Pπ(λ)(σ
′ | σ) if α = act and π′ = π

0 otherwise

6Of course, there still might be a question of whether further thought might lead to a better plan in
case the current plan was itself selected heuristically or sub-optimally.

6.5 Discussion 133

We can also lift the reward functions R over S to reward functions R over S :

R (s,α,s′) =

{
R(λ,a,λ′) if α = act

0 if α = think,

where λ′ is the agent’s location in scenario σ′. This defines a new meta-level MDP as
follows:

〈S ,{think,act},T ,R 〉

Thus, once the set S and the function T are specified, we have a well defined MDP,
whose space of policies can be investigated just like any other MDP.

Experiments Computing an optimal policy for the meta-level MDP is difficult in gen-
eral. We have implemented the general framework from the previous section in Java.
The source code is available on the Github page of this thesis:

https://github.com/marcvanzee/RationalArchitecture

In the folder “Ch6 mdp intention revision”. An example MDP visualization is depicted
in Figure E.1 of Appendix E.

Kinny and Georgeff present the Tileworld as a 2-dimensional grid on which the time
between two subsequent hole appearances is characterized by a gestation period g, and
holes have a life-expectancy l, both taken from a uniform distribution. Planning cost p
is operationalized as a time delay. The ratio of clock rates between the agent’s action
capabilities and changes in the environment is set by a rate of world change parameter γ.
This parameter determines the dynamism of the world. When an agent plans, it selects
the plan that maximizes hole score divided by distance (an approximation to computing
an optimal policy in this setting). The performance of an agent is characterized by its
effectiveness ε, which is its score divided by the maximum possible score it could have
achieved. The setup is easily seen as a specific case of our meta-decision problem (see
Fig. E.2).

Kinny and Georgeff propose two families of intention reconsideration strategies: bold
agents, who inflexibly replan after a fixed number of steps, and reactive agents, who
respond to specific events in the environment. For us, a bold agent only reconsiders
its intentions when it has reached the target hole; and a reactive agent is a bold agent
that also replans when a hole closer than its current target appears, or when its target
disappears.

In addition, we consider an angelic agent, who approximates the value of computation
calculations that would allow always selecting think or act in an optimal way. It does so
by recursively running a large number of simulations for the meta-level actions from a
given state, approximating the expected value of both, and choosing the better. Because
we are interested in the theoretically best policy, the angelic agent is not charged for any
of this computation: time stops, and the agent can spend as much time as it needs to
determine the best meta-level action (hence the term ‘angelic’).

134 Chapter 6 The Dynamics of Beliefs and Intentions

Results Graphs of the results can be found in Appendix E. In Figure E.3 we compare
the bold agent with the angelic planner with the same parameter settings as Kinny and
Georgeff and a planning time of 2. Unsurprisingly, the angelic planner outperforms
the bold agent. In Figure E.4, we increase the planning time to 4, which increases the
difference in performance between the angelic planner and the bold agent, while the
reactive planner does equally well. However, in Figure E.5, we see that when we change
the parameters settings such that the world is significantly smaller and holes appear as
quickly as they come, the angelic planner outperforms the reactive agent as well. Finally,
in Figure E.6 we consider a highly dynamic domain in which holes appear and disappear
very fast. Here the bold agent outperforms the reactive strategy, and does nearly as well
as the angelic agent. In such an environment, agents that replan too often never have a
chance to make it toward their goals.

Intriguingly, even these very simple agents—bold agents and rudimentary reactive agents—
come very close to ideal in certain environments. This suggests that if we fix a given
environment, near-optimal intention/plan reconsideration can actually be done quite
tractably. However, since these optimal meta-level strategies differ from environment
to environment, this seems to be a natural setting in which meta-meta-level reasoning
can be useful. One would like a method for determining which of a family of meta-
level strategies one ought to use, given some (statistical or other) information about the
current environment, its dynamics and the relative (opportunity) cost of planning.

While these results concern a rather specific case of the intention revision problem—
in the Tileworld, which is not necessarily representative of other domains—the general
framework concerns any sequential decision problem in a dynamic environment. Thus,
in addition to exploring the possibility of meta-meta-level strategies for this particular
domain, we are also currently exploring other settings, e.g., where states themselves may
appear and disappear and probabilities may change. We would like as comprehensive
an understanding of the general relation between these rational meta-level strategies and
environmental parameters as possible, and we believe the results here mark a good first
step.

Multi-agent extension

The importance of “joint intentions” has been recognized for some time. There is still
much disagreement in the philosophical literature about whether joint intentions can
be reduced to more basic intentions of the member of the group, or whether the joint
intentions are perhaps irreducible. Again, focusing on a database may allow us to side-
step these debates and center our study on what promises to be most useful. Clearly,
the intentions of an agent may depend on intentions of another agent, so it is important
that their intentions are properly coordinated, which is an important reason why much
of this literature has focused on communication.

In order to tackle this problem, we have done some preliminary research in which we
propose to extend the database perspective with a single auxiliary database in the multi-
agent system that we coin the “Collective Intention Database”. The collective intention
database contains a set of collective intentions. A collective intention is formalized
as a set of action-agent pairs and a time point. In this way, the collective intention
database captures two basic notions. Firstly, it serves as a coordination mechanism for
a set of agents by specifying what actions of the agents are carried out simultaneously,

6.5 Discussion 135

and in this way represents dependencies between the intentions of the individual agents.
Secondly, it allows agents to reason about each others intentions, in the sense that each
agent believes that the other agents will carry out their part in a collective intention. We
extend our definition of coherence in a natural way: An agent’s beliefs cohere with his
intentions and the collective intentions if 1) the agent considers it possible to carry out
all of his intended actions (this is equivalent to our definition), and 2) the agent considers
it possible that all intentions by other agents in collective intentions in which the agent
itself also participates are carried out by the corresponding agents. A visualization of
this view is shown in Figure 6.4.

Figure 6.4: The Multi-agent database perspective

6.5.3 Conclusion

We develop a logical theory for reasoning about temporal beliefs and intentions based
on Shoham’s database perspective. We propose postulates for revision of strong beliefs
and intentions, and prove a representation theorem relating the postulates to our formal
model.

Our approach, contrary to much of the work emanating from Cohen and Levesque, has
been to study the temporal dimension of commitments, as opposed to much existing
research which often focuses on the teleological dimension of commitments. As a re-
sult, our theory is conceptually considerably simpler than other formalism attempting to
incorporate a large amount of mental attitudes. However, as we have seen, even in this
simple setting already nontrivial complications arise, and interesting technical results
can be obtained.

We have focused on the temporal dimension by using Shoham’s database perspective,
which means that we separate the planning capabilities of an agent from the storing
of commitments. Beliefs and commitments are stored in a database, while the planner
operates independently of these databases. By focusing on the temporal dimension of
commitments and separating planning from the storing of commitments, we make the
link between artificial intelligence planning and philosophical theories of intention more
explicit.

7

Conclusion

The overall aim of this thesis is to study enterprise architect reasoning, in order to sup-
port enterprise architects in their daily activities. In Part 1, we focus on understanding
the characteristics of enterprise architecture better. We first interview enterprise archi-
tects in order to gain a general understanding about the domain, and we obtain a list of
characteristics (Chapter 2). Then we formalize an existing framework for enterprise ar-
chitecture decision rationalization and notice various shortcomings (Chapter 3). In Part
2, we focus on goals. We develop the RationalGRL logical framework, which combines
an approach for goal modeling with formal argumentation (Chapter 4). In Part 3, we
focus on planning and scheduling. We develop the BDI logic Parameterized-time Ac-
tion Logic for beliefs and commitments, axiomatize it and proof it is sound and strongly
complete (Chapter 5). We characterize the dynamics of beliefs and commitments and
prove a variation of the Katsuno and Mendelzon, as well as the Darwiche and Pearl
representation theorems (Chapter 6).

The introductory chapter has put forward a number of research questions aimed at un-
derstanding enterprise architect reasoning about high-level decisions. Those questions
have been answered in the following way:

RQ 1. Which aspects of enterprise architect reasoning about high-level decisions
can be supported by decision support systems?

We provide a list of eight characteristics in Chapter 2, which we derive from interviews
with enterprise architects. These are the following:

1. Translating strategic goals into an IT strategy

2. Communicating plans of action

3. Explaining decisions instead of making them

4. Qualitative before quantitative data

5. Stronger business focus than other disciplines

6. Politics, emotions, and soft skills play a bigger role than in other disciplines

7. Large number of stakeholders with conflicting views

8. Highly uncertain plans in a changing environment

Of these characteristics, we focus primarily on goals (characteristic 1, Part 2), and plan-
ning (characteristic 2 and 8, Part 3). These characteristics indicate that approaches based

137

138 Chapter 7 Conclusion

on resource bounded reasoning may be appropriate, as well as qualitative theories as op-
posed to those that are strictly quantitative.

RQ 2 Which aspects of enterprise architecture reasoning and goal modeling can be
supported by decision support systems?

Reasoning about the refinement of goals is an important part of enterprise architec-
ture, and various specific modeling languages have been developed to address this need.
However, although these languages have been developed to support communication be-
tween the enterprise architect and stakeholders, many of the elements of the discussions
cannot be captured clearly. Artificial intelligence research has a solid foundation of
research on argumentation. Applying such theoretical results to a practical field is chal-
lenging and runs into the risk of becoming too complicated to be of use to practitioners.
We show that goal modeling and argumentation are a very good fit, in particular when
using argument schemes and critical questions.

RQ 3. Which aspects of enterprise architecture planning will be considered in this
thesis?

We develop a belief-desire-intention logics in order to formalize a specific part of en-
terprise architecture dynamics, namely the storing of future commitments with explicit
time points. In this way, we separate the storing of commitments from planning, and our
system can in this sense be seen as an intelligent calendar. This calendar can be used
to store commitments (which can be tasks, appointments, or anything else) and beliefs
about these commitments. The intelligence of the calendar comes from the fact that it
can reason about the consistency of commitments and beliefs.

Returning to the main theme of this thesis, we should ask ourselves: what does our
resulting logical theory contribute to enterprise architecture? Let us briefly zoom out
and reconsider our methodology. The last part of this thesis was concerned with the last
“brick” of the bridge from enterprise architecture to artificial intelligence. Our journey
has led us from interviews with enterprise architects to a technical and abstract logical
framework for reasoning about the dynamics of abstract notions such as “commitments”
and “beliefs”. How can such a system be of use to enterprise architects? One simple
answer may be as follows: The resulting logic should now be extended with more char-
acteristics from enterprise architecture. To continue our bridge metaphor: the next part
of this journey goes into the other direction. We start with our logical theory for the dy-
namics of commitments, and while we walk back over the bridge, we add characteristics
and techniques from our various contributions. For the second brick, we may add the
possibility to refine intentions into more specific ones, and a multi-agent perspective to
argue about intentions. For the first brick, we may add very domain-specific elements
we found in the EA Anamnesis framework, such as enterprise architecture layers, types
of relationship between various commitments, and so on.

These are all very exciting possibilities, and I hope my thesis has inspired my successors
to such an extent that they consider working on them.

A

UCI Design Workshop Prompt

Design Prompt: Traffic Signal Simulator

Problem Description

For the next two hours, you will be tasked with designing a traffic flow simulation pro-
gram. Your client for this project is Professor E, who teaches civil engineering at UCI.
One of the courses she teaches has a section on traffic signal timing, and according to
her, this is a particularly challenging subject for her students. In short, traffic signal tim-
ing involves determining the amount of time that each of an inter- section’s traffic lights
spend being green, yellow, and red, in order to allow cars in to flow through the inter-
section from each direction in a fluid manner. In the ideal case, the amount of time that
people spend waiting is minimized by the chosen settings for a given intersection’s traf-
fic lights. This can be a very subtle matter: changing the timing at a single intersection
by a couple of seconds can have far- reaching effects on the traffic in the surrounding
areas. There is a great deal of theory on this subject, but Professor E. has found that her
students find the topic quite abstract. She wants to provide them with some software
that they can use to “play” with different traffic signal timing schemes, in different sce-
narios. She anticipates that this will allow her students to learn from practice, by seeing
first-hand some of the patterns that govern the subject.

Requirements

The following broad requirements should be followed when designing this system:

1. Students must be able to create a visual map of an area, laying out roads in a
pattern of their choosing. The resulting map need not be complex, but should
allow for roads of varying length to be placed, and different arrangements of in-
tersections to be created. Your approach should readily accommodate at least six
intersections, if not more.

2. Students must be able to describe the behavior of the traffic lights at each of the
intersections. It is up to you to determine what the exact interaction will be, but
a variety of sequences and timing schemes should be allowed. Your approach
should also be able to accommodate left-hand turns protected by left-hand green
arrow lights. In addition:

(a) Combinations of individual signals that would result in crashes should not
be allowed.

139

140 Chapter A UCI Design Workshop Prompt

(b) Every intersection on the map must have traffic lights (there are not any stop
signs, over- passes, or other variations). All intersections will be 4-way:
there are no “T” intersections, nor one-way roads.

(c) Students must be able to design each intersection with or without the option
to have sensors that detect whether any cars are present in a given lane. The
intersection’s lights’ behavior should be able to change based on the input
from these sensors, though the exact behavior of this feature is up to you.

3. Based on the map created, and the intersection timing schemes, the students must
be able to simulate traffic flows on the map. The traffic levels should be conveyed
visually to the user in a real-time manner, as they emerge in the simulation. The
current state of the intersections’ traffic lights should also be depicted visually, and
updated when they change. It is up to you how to present this information to the
students using your program. For example, you may choose to depict individual
cars, or to use a more abstract representation.

4. Students should be able to change the traffic density that enters the map on a given
road. For ex- ample, it should be possible to create a busy road, or a seldom used
one, and any variation in between. How exactly this is declared by the user and
depicted by the system is up to you. Broadly, the tool should be easy to use, and
should encourage students to explore multiple alternative approaches. Stu- dents
should be able to observe any problems with their map’s timing scheme, alter it,
and see the results of their changes on the traffic patterns. This program is not
meant to be an exact, scientific simulation, but aims to simply illustrate the basic
effect that traffic signal timing has on traffic. If you wish, you may assume that
you will be able to reuse an existing software package that provides relevant math-
ematical functionality such as statistical distributions, random number generators,
and queuing theory.

You may add additional features and details to the simulation, if you think that they
would support these goals.

Your design will primarily be evaluated based on its elegance and clarity both in its
overall solution and envisioned implementation structure.

Desired Outcomes

Your work on this design should focus on two main issues:

1. You must design the interaction that the students will have with the system. You
should design the basic appearance of the program, as well as the means by which
the user creates a map, sets traffic timing schemes, and views traffic simulations.

2. You must design the basic structure of the code that will be used to implement
this system. You should focus on the important design decisions that form the
foundation of the implementation, and work those out to the depth you believe is
needed.

Chapter A UCI Design Workshop Prompt 141

The result of this session should be: the ability to present your design to a team of
software developers who will be tasked with actually implementing it. The level of com-
petency you can expect is that of students who just completed a basic computer science
or software engineering undergraduate degree. You do not need to create a complete,
final diagram to be handed off to an implementation team. But you should have an
understanding that is sufficient to explain how to implement the system to competent
developers, without requiring them to make many high-level design decisions on their
own.

To simulate this hand-off, you will be asked to briefly explain the above two aspects of
your design after the design session is over.

Timeline

• 1 hour and 50 minutes: Design session

• 10 minutes: Break / collect thoughts

• 10 minutes: Explanation of your design

• 10 minutes: Exit questionnaire

B

Transcripts Excerpts

Respondent Text Annotation
0:17:39.5
(P1)

And in that process there are activities like
create a visual map, create a road

[14 task (AS2)] Student has task “Cre-
ate road”

0:24:36.0
(P3)

And, well interaction. Visualization sorry. Or
interaction, I don’t know. So create a visual
map would have laying out roads and a pat-
tern of their choosing. So this would be first,
would be choose a pattern.

[31 critical question CQ?? for 14] Is
Task “Create road” clear?
[32 answer to 31] no, according to the
specification the student should choose
a pattern.
[32a REPLACE] “Create road”
becomes “Choose a pattern”

0:24:55.4
(P1)

How do you mean, choose a pattern

0:24:57.5
(P3)

Students must be able to create a visual map
of an area, laying out roads in a pattern of
their choosing

0:25:07.5
(P1)

Yeah I’m not sure if they mean that. I don’t
know what they mean by pattern in this case.
I thought you could just pick roads, varying
sizes and like, broads of roads.

[33 critical question CQ?? for 32a] Is
“Choose a pattern” clear?
[34 answer to 33] No, not sure what
they mean by a pattern.

0:25:26.0
(P3)

No yeah exactly, but you would have them
provide, it’s a pattern, it’s a different type of
road but essentially you would select- how
would you call them, selecting a-

[34a REPLACE] “Choose a pattern”
becomes “Choose a pattern
preference”

0:25:36.3
(P1)

Yeah, selecting a- I don’t know

0:25:38.0
(P3)

Pattern preference maybe? As in, maybe we
can explain this in the documentation

0:25:43.9
(P1)

What kind of patterns though. Would you be
able to select

[35 critical question CQ?? for 34a] Is
“Choose a pattern preference” clear?
[36 answer to 35] no, what kind of pat-
tern?

0:25:47.4
(P3)

Maybe, I don’t know it’s- [36a rename] “Choose a pattern
preference” becomes “Choose a road
pattern”0:25:48.5

(P1)
[inaudible] a road pattern

Table B.1: Clarifying the name of a task (transcript t3)

143

144 Chapter B Transcripts Excerpts

Respondent Text Annotation
0:15:11.2
(P1)

And then, we have a set of actions. Save map,
open map, add and remove intersection, roads

[20 task (AS2)] Student has tasks
“save map”, “open map”, “add
intersection”, “remove intersection”,
“add road”, “add traffic light”

0:15:34.7
(P2)

Yeah, road. Intersection, add traffic lights

0:15:42.3
(P1)

Well, all intersection should have traffic lights
so it’s

[21 critical question CQ12 for 20] Is
the task “Add traffic light”
useful/relevant?
[22 answer to 22] Not useful, because
according to the specification all
intersections have traffic lights.

0:15:44.9
(P2)

Yeah

0:15:45.2
(P1)

It’s, you don’t have to specifically add a traffic
light because if you have

0:15:51.4
(P2)

They need-

Table B.2: Adding tasks, disabling useless task “Add traffic light” (transcript t1)
Respondent Text Annotation
0:18:55.7
(P1)

Yeah. And then two processes,
static, dynamic and they belong
to the goal simulate.

[17 goal (AS3)] Actor “System” has goal “Simu-
late”
[18 task (AS2)] Actor “System” has task “Static
simulation”
[19 task (AS2)] Actor “System has task “Dynamic
simulation”
[20 decomposition (AS?)] Goal “Simulation”
AND-decomposes into ”Static simulation” and “Dy-
namic simulation”

0:30:10.3
(P1)

Yeah. But this is- is this an OR
or an AND?

[26 critical question CQ10b for 20] Is the
decomposition type of “simulate” correct?
[27 answer to 26] No, it should be an OR
decomposition.

0:30:12.6
(P2)

That’s and OR

0:30:14.3
(P3)

I think it’s an OR

0:30:15.4
(P1)

It’s for the data, it’s an OR

0:30:18.1
(P3)

Yep

Table B.3: Incorrect decomposition type for goal Simulate (transcript t3)
Respondent Text Annotation
0:10:55.2
(P1)

Maybe developers [4 actor (AS0)] Development team

0:11:00.8
(P2)

Development team, I don’t know. Because
that’s- in this context it looks like she’s gonna
make the software

[5 critical question CQ0 for 4] Is actor
”development team” relevant?
[6 answer to 5] No, it looks like the
professor will develop the software.

0:18:13.4
(P2)

I think we can still do developers here. To the
system

[16 counter argument for 6]
According to the specification the
professor doesn’t actually develop the
software.

0:18:18.2
(P1)

Yeah?

0:18:19.8
(P2)

Yeah, it isn’t mentioned but, the professor
does-

0:18:22.9
(P1)

Yeah, when the system gets stuck they also
have to be [inaudible] ok. So development
team

Table B.4: Discussion about the relevance of an actor (transcript t3)

C

GRL Specification

This is the specification of the GRL model in Figure 4.2 using the atomic language
developed in Chapter 4, Section 4.5.

%% GRL Elements
actors([1,24,43]).
ies([2...17, 25...34, 44, 45]).
links([18...23, 35...42, 47, 48, 49]).

%%%%% Actor student %%%%%%
name(1, student).

% IE types of actor student
softgoal(2).
goal(3).
tasks(4). task(5). ... task(17).

% Containments of actor student
has(1, 2). has(1, 3). ... has(1, 17).

% IE names of actor student
name(2, learn_queuing_theory_from_practice).
name(3, use_simulator).
name(4, map_design).
name(5, open_map).
name(6, add_road).
name(7, add_sensor_to_traffic_light).
name(8, control_grid_size).
name(9, add_intersection).
name(10, run_simulation).
name(11, save_map).
name(12, control_simulation).
name(13, control_car_influx_per_road).
name(14, adjust_car_spawing_rate).
name(15, adjust_timing_schemes_of \

sensorless intersections).
name(16, remove_intersection).
name(17, add_traffic_light).

% Links of actor student
contr(18, 3, 2, pos).
contr(19, 4, 3, pos).
contr(20, 11, 3, pos).
decomp(21, 4, [5...11], and).
decomp(22, 4, [5...11, 13], and).
decomp(23, 12, [13,14,15], and).

% Disabled elements of actor student
disabled(16). disabled(17). disabled(22).

%%%% Actor Traffic Tycoon %%%%%%%/
name(24, traffic_tycoon).

% IE types of actor Traffic Tycoon
softgoal(25). softgoal(26).
goal(27). goal(28).
task(29). ... task(32).
resource(33). resource(34).

% Containments of actor Traffic Tycoon
has(24, 25). ... has(24,34).

% IE names of actor Traffic Tycoon
name(25, dynamic_simulation).
name(26, realistic_simulation).
name(27, show_simulation).
name(28, generate_cars).
name(29, keep same_cars).
name(30, create_new_cars).
name(31, show_map_editor).
name(32, store_load_map).
name(33, external_library).
name(34, storage).

% Links of actor Traffic Tycoon
contr(35, 29, 25, neg).
contr(36, 29, 26, pos).
contr(37, 30, 25, pos).
contr(38, 30, 26, neg).
decomp(39, 28, [29, 30], xor).
decomp(40, 27, [28, 33], and).
decomp(41, 31, [32], and).
decomp(42, 32, [34], and).

%%%% Actor Teacher %%%%%%%
name(43, teacher).

% IE types of actor Teacher
softgoal(44).
task(45).

% Containments of actor Teacher
has(43, 44). has(43,45).

% IE names of actor Teacher
name(44, students_learn_from_practice).
name(45, pass_students_if_simulation_is_correct).

% Disabled elements of actor Teacher
disabled(45).

%%%%%% Dependencies %%%%%
goal(46).
name(46, value_has_changed).

dep(47, 32, 46).
dep(48, 46, 14).
dep(49, 32, 11).

%%%%%% Rules for containment %%%%%
has(Act,E1) :- has(Act, E2), decomposes(_,E2,X,_),

member(E1,X).
has(Act,E1) :- has(Act,E1), contr(E2, E1,_).

145

D

Proofs

D.1 Completeness proofs

Theorem D.1 (Completeness Theorem). The logic PAL is sound and strongly complete,
i.e. Σ ` ϕ iff Σ |= ϕ.

T ` ϕ⇒ T |= ϕ can be proven by standard techniques.

Strong completeness: T |= ϕ ⇒ T ` ϕ.

We prove strong completeness by constructing a canonical model, given a consistent set
of formulas, but before this we introduce some concepts that we will need in different
parts of the proof. These concepts will be largely familiar to most readers.

Definition D.1 (Maximally consistent set (mcs)). Given the logic PAL, a set of formulas
T is PAL-consistent if one cannot derive a contradiction from it, i.e. if ⊥ cannot be
inferred from it, in the proof system for PAL. A set of formulas T ∗ is a maximally PAL-
consistent set (mcs) if it is PAL-consistent and for every formula ϕ, either ϕ belong to
the set or ¬ϕ does.

We denote the part of a mcs up to and include time t with T ∗t , formally: T ∗t = T ∗ ∩
Past(t).

The proofs of the following two results, Deduction theorem and Lindenbaum’s lemma,
are standard.

Lemma D.1 (The Deduction Theorem). Σ∪{ϕ} ` ψ ⇔ Σ ` ϕ→ ψ.

Lemma D.2 (Lindenbaum’s lemma). Every consistent set of formulas can be extended
to a maximal consistent set of formulas.

Now we define an equivalence relation on maximally consistent sets of formulas.

Definition D.2 (Mcs Equivalence Relation). Suppose some t ∈N and two mcs’s T ∗ and
T ∗, we define the equivalence relation between T ∗ and T ∗, denoted by T ∗ ≡t T ∗ as
follows: T ∗ ≡t T ∗ iff T ∗∩Past(t) = T ∗∩Past(t).

Definition D.3 (Equivalence class). Let T ∗ be a mcs. [T ∗]t is the set of all mcs’s that are
equivalent to T ∗ up and including time t, i.e. [T ∗]t = {T

∗ | T ∗ ≡t T ∗}.

The next step is to reduce truth of a formula in a maximal consistent set to membership
of that set, which is the content of the truth lemma. We first present a lemma that we
need in the proof of the valuation lemma, which follows after that.

147

148 Chapter D Proofs

Lemma D.3. Let Σ= {ϕ1, . . . ,ϕn} be some set of PAL-formulas and abbreviate {2tϕ1, . . . ,2tϕn}
with 2tΣ. If Σ ` ϕ, then 2tΣ `2tϕ.

Proof. Suppose {ϕ1, . . . ,ϕn} ` ϕ. By the Deduction theorem, ` (ϕ1 ∧ . . .∧ϕn)→ ϕ.
Applying necessitation gives `2t((ϕ1∧ . . .∧ϕn)→ ϕ), and from the K-axiom it follows
that `2t(ϕ1∧ . . .∧ϕn)→2tϕ. Since 2t(ϕ1∧ . . .∧ϕn)≡2tϕ1∧ . . .2tϕn, we obtain `
(2tϕ1∧ . . .2tϕn)→2tϕ. Finally, by Deduction theorem {2tϕ1, . . . ,2tϕn} `2tϕ.

Lemma D.4. T ∗t `2tT ∗t .

Proof. It is sufficient to show that for all ϕ ∈ Past(t) we have

ϕ `2tϕ.

We prove that claim by induction on the length of the formula ϕ. We distinguish two
base cases, one where ϕ is a proposition, and another where ϕ is an atomic “do” formula.

(Base case 1) Suppose ϕ = χt ′ with χ ∈ Prop and t ′ ≤ t. 2t ′χt ′ follows by applying Axiom A1.
Then, apply Axiom A5 repeatedly until 2tχt ′ follows.

(Base case 2) Suppose ϕ = do(a)t ′ with t ′< t (note that do(a)t does not occur in Past(t)). Using
Axiom A3 and then repeatedly Axiom A5 we obtain 2tdo(a)t ′ .

(Conjunction) Suppose ϕ=ψ∧χ. By the induction hypothesis ψ`2tψ and χ`2tχ, so therefore
ψ∧χ `2tψ∧2tχ. Since 2tψ∧2tχ is equivalent to 2t(ψ∧χ), it follows directly
that ψ∧χ `2t(ψ∧χ).

(Box) Suppose ϕ =2t ′ψ. By transitivity (which is not an axiom of our logic, but it holds
in KT5): 2t ′ψ→2t ′2t ′ψ. Next, apply Axiom A5 repeatedly to obtain 2t2t ′ϕ.

(Negation) Suppose ϕ = ¬ψ. We will make a case distinction on the form of negated formula
ψ.

(Base case 1) Suppose ϕ = ¬χt ′ with χ ∈ Prop and t ′ ≤ t, then 2t¬χt follows from Axiom
A2 (we use the contraposition of A2) and A5.

(Base case 2) Suppose ϕ = ¬do(a)t ′ with t ′ < t. We apply Axiom A4 (we use the contra-
position of A4) and A5 repeatedly until we have 2t¬do(a)t ′ .

(Disjunction) Suppose ϕ = ¬(ψ∨ χ), which is equivalent to ¬ψ∧¬χ. By the induction
hypothesis, ¬ψ ` 2t¬ψ and ¬χ ` 2t¬χ, thus ¬ψ∧¬χ ` 2t¬ψ∧2t¬χ.
Consequently, ¬ψ∧¬χ `2t(¬ψ∧¬χ), or, equivalently, ϕ `2tϕ.

(Box) Suppose ϕ=¬2t ′ψ, which is equivalent to 3t ′¬ψ. From Axiom 5 we obtain
2t ′3t ′¬ψ, and by again applying Axiom A5 repeatedly we obtain 2t3t ′¬ψ,
which is equivalent to 2t¬2t ′ψ, and this is what we had to show.

(Negation) Suppose ϕ=¬¬ψ. Since ψ is a subformula of ϕ, by the induction hypothesis
we have ψ `2tψ. But ψ is equivalent to ϕ, so we have ϕ `2tϕ.

D.1 Completeness proofs 149

Lemma D.5 (Valuation lemma). For any maximal consistent set T ∗, the following are
true

1. T ∗ is deductively closed: T ∗ ` ϕ implies that ϕ ∈ T ∗;
2. ϕ ∈ T ∗ iff ¬ϕ 6∈ T ∗;
3. ϕ∧ψ ∈ T ∗ iff ϕ ∈ T ∗ and ψ ∈ T ∗;
4. 2tϕ ∈ T ∗ iff for all T ∗ s.t. T ∗ ≡t T ∗ : ϕ ∈ T ∗.

Proof. 1. Because T ∗ is maximally consistent, either ϕ ∈ T ∗ or ¬ϕ ∈ T ∗. Suppose
that T ∗ ` ϕ, and suppose for contradiction that ¬ϕ ∈ T ∗. From this it follows that
T ∗ ` ¬ϕ and therefore T ∗ `⊥, which would contradict consistency of T ∗. Hence
ϕ ∈ T ∗.

2. Follows directly from the definition of a maximally consistent set.

3. Follows directly as well.

4. ⇒: Suppose 2tϕ ∈ T ∗. Take arbitrary T ∗ with T ∗ ≡t T ∗. From Def. D.2 (equiva-
lent mcs) it follows that 2tϕ ∈ T ∗. Therefore, by Axiom T we obtain ϕ ∈ T ∗.

⇐: We show this by contraposition. Therefore, suppose 2tϕ 6∈ T ∗. We will show
that there exists some T ∗ with T ∗ ≡t T ∗ and ϕ 6∈ T ∗.

Suppose for contradiction that ¬ϕ is not consistent with T ∗t , i.e. T ∗t ∪{¬ϕ} `⊥, so
by the Deduction Theorem (Lemma D.1), T ∗t ` ϕ holds. By Lemma D.3, we have
(1) 2tT ∗t ` 2tϕ. From Lemma D.4 it follows that (2) T ∗t ` 2tT ∗t , so combining
(1) and (2) gives T ∗t ` 2tϕ. But this contradicts with our initial assumption that
2tϕ 6∈ T ∗. Thus, the assumption is invalid so T ∗t ∪{¬ϕ} is consistent.

By Lindenbaum’s lemma, T ∗t ∪ {¬ϕ} can be extended to a mcs T ∗, and since
T ∗t ⊆ T ∗, it follows directly that T ∗ ≡t T ∗. Therefore, there exists a mcs T ∗ with
T ∗ ≡t T ∗ and ϕ 6∈ T ∗, and this is what we had to show.

We construct the canonical model by naming the states in our model as equivalence
classes of mcs’s, which are parameterized by a time point. For instance, the state s =
[T ∗]t is named as the set of mcs’s equivalent to the mcs T ∗ up to and including time t.
We then define accessibility relation between states named after equivalence classes up
to and including subsequent time points of the same mcs. Finally, the valuation function
assigns the set of propositions that are true in an equivalence class to the corresponding
state.

Definition D.4 (Canonical Tree). Given a mcs T ∗, we obtain a PAL-canonical tree
TreeT ∗ = (S,R,v,act), where

1. S =
⋃

t∈N St where St = {[T
∗
]t | T

∗ ≡0 T ∗}
2. sRs′ iff (∃T ∗, t ∈ N).(s = [T ∗]t ∧ s′ = [T ∗]t+1)
3. p ∈ v(s) iff (∃T ∗, t ∈ N).(s = [T ∗]t ∧ pt ∈ T ∗).
4. if πt = s and πt+1 = s′, then a = act(πt) iff (∃T ∗).(s = [T ∗]t ∧ s′ = [T ∗]t+1 ∧

do(a)t ∈ T ∗)

Note that the existential quantifier in (3) of Def. D.4 could equivalently be replaced by
a universal quantifier, because of the definition of equivalence classes (Def. D.3): All

150 Chapter D Proofs

mcs’s in [T ∗]t are equivalent up to time t, so if some timed proposition pt is an element
of some mcs in this set, then it is necessarily an element of any other mcs in this set as
well.

Lemma D.6. Given a mcs T ∗, TreeT ∗ is a tree.

Proof. Suppose some T ∗ and let TreeT ∗ = (S,R,v,act). We have to show that R is serial,
linearly ordered in the past, and connected.

• serial: Suppose some s ∈ S s.t. s = [T ∗]t. We have to show that there exists some
s′ ∈ S such that sRs′, i.e. there exists some T ′

∗
s.t. s = [T ′]t and s′ = [T ′]t+1. This

directly follows for T ′ = T and by the fact that T ∗ is a mcs.

• linearly ordered in the past: Suppose some s ∈ S s.t. s = [[T ∗]t and t > 0 (t = 0 is
the root of the tree). We show that there exists exactly one s′ s.t. s′Rs. Suppose for
contradiction that there exist distinct s′,s′′ ∈ S such that s′Rs and s′′Rs. Then there
are T ′,T ′′ such that s′ = [T ′]t−1, s′′ = [T ′′]t−1 and s = [T ′]t = [T ′′]t . From s′ 6= s′′

we obtain T ′ 6≡t−1 T ′′. However, then T ′ 6≡t T ′′ holds as well, but this contradicts
with s = [T ′]t = [T ′′]t . Thus, s′ 6= s′′ is not possible.

• connected: Suppose s,s′ ∈ S with s = [T ∗]t and s′ = [T ′
∗
]t ′ . We show that there

exists some s′′ such that s′′R∗s and s′′R∗s′, where R∗ is the transitive closure of R.
This directly holds for s′′ = [T ∗]0, since then s′′ ∈ {[T ∗]0 | T

∗ ≡0 T ∗}.

Given a mcs T ∗, we construct a path πT ∗ = (s0,s1, . . .) from it by letting st = [T ∗]t . So
p ∈ vp(πT ∗t) iff pt ∈ T ∗ and a = act(πT ∗t) iff do(a)t ∈ T ∗.

Given a path π in a canonical tree TreeT ∗ and a t ∈ N, we denote

Tπ|t := T ∗∩Past(t),

where T ∗ ∈ πt . Note that the definition is correct: Tπ|t does not depend on the choice
of the element from Tπ by Definition 2 and 3. We construct the set Tπ from a path π as
follows:

Tπ =
⋃
t∈N

Tπ|t .

The next two lemmas show that for each π in the canonical tree TreeT ∗ , Tπ is a mcs.

Lemma D.7. Given a mcs T ∗, For any path π in the canonical tree TreeT ∗: Tπ|t ⊆ Tπ|t+1.

Proof. Suppose some mcs T ∗ and some arbitrary path π in the canonical tree TreeT ∗ .
From the construction of the canonical tree we have that πtRπt+1 iff there is some T ∗

with πt = [T ∗]t and πt+1 = [T ∗]t+1. Clearly, we have that T ∗t ⊆ T ∗t+1, so Tπ|t ⊆ Tπ|t+1.

Lemma D.8. Given a mcs T ∗, for any path π in the canonical tree TreeT ∗: Tπ is a mcs.

D.1 Completeness proofs 151

Proof. (Consistent) From Lemma D.7 we have that Tπ|0 ⊆ . . . ⊆ Tπ|t . Moreover, Tπ|t ⊆
T ∗ where T ∗ is a mcs, which is consistent by definition, so Tπ is consistent as well.

(Maximal) Suppose an arbitrary PAL-formula ϕ. Then there is a maximal t that appears
in ϕ, therefore, ϕ ∈ Past(t). By definition, ϕ ∈ Tπ|t or ¬ϕ ∈ Tπ|t . Since Tπ|t ⊆ Tπ, we
have that ϕ ∈ Tπ or ¬ϕ ∈ Tπ. Hence Tπ is maximal.

The following three lemmas are direct consequences of the construction of Tπ and πT .

Lemma D.9. Given a mcs T ∗, two paths π and π′ in the canonical tree TreeT ∗ and some
time point t: π∼t π′ iff. Tπ ≡t Tπ′ .

Lemma D.10. Given two mcs T ∗ and T ∗ and some time point t, T ∗≡t T ∗ iff. πT ∗ ∼t πT ∗ .

Lemma D.11. Given a mcs T ∗, in the canonical tree TreeT ∗ ,

1. For each π, π(Tπ) = π.

2. For each T ∗, T(πT∗)
= T ∗.

Note that by the previous lemma, for every path π in the canonical tree TreeT ∗ , there
exists a unique mcs T ∗ such that π = πT ∗ .

Lemma D.12. Given a mcs T ∗: (TreeT ∗,πT ∗) is a model.

Proof. Suppose some T ∗. From Lemma D.6 we have that TreeT ∗ is a tree. In order to
show that (TreeT ∗ ,πT ∗) is a model we prove the four conditions on a model. Recall that

πT ∗ = (s0,s1, . . .) where st = [T ∗]t .

1. Suppose act(st) = a. By the truth definition and the construction of st , we have
do(a)t ∈ T ∗. By Axiom A8 and the maximality of T ∗, post(a)t+1 ∈ T ∗, so
post(a) ∈ st+1.

2. Suppose pre(a) ∈ v(πT ∗ t). We need to show that there is some π′ in TreeT ∗ with
πT ∗ ∼t π′ and v(π′t) = a. From pre(a) ∈ v(πT ∗ t) we conclude pre(a)t ∈ T ∗. Then
by Axiom A9 and the maximality of T ∗ we obtain 3tdo(a)t ∈ T ∗. By Lemma
D.5(4), there exist T ∗ s.t. T ∗ ≡t T ∗ and do(a)t ∈ T ∗. Obviously, for π′ = πT ∗ we
have πT ∗ ∼t π′ (from Lemma D.10) and v(π′t) = a.

3. and 4. can be proved in a similar way, using the axioms A9–A12 and the maximality of
T ∗.

Lemma D.13 (Truth lemma). Given a mcs T ∗: for every maximally PAL-consistent set
of formula T ∗ and for every formula ϕ :

(TreeT ∗,πT ∗) |= ϕ iff. ϕ ∈ T ∗

152 Chapter D Proofs

Proof. By induction on the depth of the proof.

(Base case) Suppose ϕ = χt , for some atomic proposition χ ∈L . From the truth defini-
tion we have TreeT ∗,πT ∗ |= χt iff. χ ∈ v(πT ∗t). From the construction of πT ∗t it follows
then directly that χt ∈ T ∗t. Suppose ϕ = do(a)t . From the truth definition we have
TreeT ∗,πT ∗ |= do(a)t iff act(πT ∗t) = a. Again, from the construction of πT ∗ we obtain
do(a)t ∈ T ∗.

(Negation) Suppose ϕ = ¬ψ. From the valuation lemma we know that ¬ψ ∈ T ∗ iff ψ 6∈
T ∗. By the induction hypothesis, ψ 6∈ T ∗ is equivalent to TreeT ∗,πT ∗ 6|= ψ. According to
the truth definition that is equivalent to TreeT ∗,πT ∗ |=¬ψ. Hence, ¬ψ∈ T ∗ is equivalent
to TreeT ∗,πT ∗ |= ¬ψ.

(Conjunction) Suppose ϕ = ψ∧χ. From the valuation lemma we know that ψ∧χ ∈ T ∗

iff ψ∈ T ∗ and χ∈ T ∗. By the induction hypothesis, that is equivalent to TreeT ∗,πT ∗ |=ψ

and TreeT ∗,πT ∗ |= χ, respectively. Lastly, applying the truth definition, this is equivalent
to TreeT ∗,πT ∗ |= ψ∧χ. Therefore, ψ∧χ ∈ T ∗ iff TreeT ∗,πT ∗ |= ψ∧χ.

(Necessity) Suppose ϕ =2tψ. We show both directions of the bi-implication separately.

⇒: Suppose that TreeT ∗ ,πT ∗ |= 2tψ, i.e. for all π′ with πT ∗ ∼t π′ : TreeT ∗ ,π
′ |= ψ.

Pick such π′ arbitrarily. From Lemma D.11 we have that there is a unique mcs T
∗

such
that π′ = π

T
∗ . Thus, TreeT ∗,πT

∗ |= ψ holds, and by the induction hypothesis, ψ ∈ π
T
∗

holds as well. Since πT ∗ ∼t π
T
∗ , from Lemma D.10 we obtain T ∗ ≡t T

∗
. Thus, by the

valuation lemma we obtain 2tψ ∈ T ∗.

⇐: Suppose that 2tψ ∈ T ∗. By the valuation lemma, for all T
∗

with T ∗ ≡t T
∗

: ψ ∈ T
∗
.

Take such T
∗

arbitrarily. From the induction hypothesis we have that TreeT ∗,πT
∗ |= ψ.

Since T ∗ ≡t T
∗
, it follows from Lemma D.10 that πT ∗ ∼t π

T
∗ . Since T

∗
was chosen

arbitrarily, we have that for all π′ with πT ∗ ∼t π′ it holds that TreeT ,π
′ |= ψ. Therefore,

TreeT ∗,πT ∗ |= 2tψ.

We can now prove that the logic PAL is strongly complete:

Theorem 1, Completeness. We prove this by contraposition, showing that T 6` ϕ implies
T 6|= ϕ. If T 6` ϕ, then T ∪{ϕ} is inconsistent, so there is a mcs T ∗⊃ T containing ¬ϕ, as
the Lindenbaum lemma shows. By the Truth lemma we have that TreeT ∗ ,πT ∗ |= ¬ϕ iff.
¬ϕ ∈ T ∗. And thus TreeT ∗,πT ∗ |= ¬ϕ, since ¬ϕ ∈ T ∗. Hence there is a model, namely
Tree, and a path, namely πT ∗ , where T ∪{¬ϕ} is true and T ∪{ϕ} is false. Therefore,
T |= ¬ϕ, and that is what we had to show.

D.2 Coherence Condition Proofs

Lemma 6.1. if I′ ⊆ I, then Cohere(I) `Cohere(I′).

Proof. Suppose an intention database I = {(bt1, t1), . . . ,(btn, tn)} with t1 < .. . < tn. Re-

D.2 Coherence Condition Proofs 153

call that

Cohere(I) = 30
∨

ak∈Act:k 6∈{t1,...,tn}
ak=bk:k∈{t1,...,tn}

pre(at1,at1+1, . . . ,atn)t1. (D.1)

The case where I′ = I follows directly. Suppose I′ ⊂ I. We consider three cases and
show that for each case Cohere(I) ` Cohere(I′). We write pre f orm(I) to denote the
precondition disjunction in the coherence condition, i.e. Cohere(I) = 30 pre f orm(I).
Moreover, if the subscript notation is omitted from a big disjunction, then it is equal to
that of Eq. (D.1).

1. Case 1: I′ = I\{(bt1, t1)}. Thus,

Cohere(I′) = 30
∨

pre(at2,at2+1, . . . ,atn)t2.

Using Axiom (A11), we can derive pre(at1)t1 for each disjunct in pre f orm(I).
Thus, we have that pre f orm(I) infers pre(at1)t1 . From pre(at1)t1 using Axiom
(A8) we obtain 3t1do(at1)t1 .

Using (A1) and pre f orm(I), we derive∨
ak∈Act:k 6∈{t1,...,tn}
ak=bk:k∈{t1,...,tn}

2t1 pre(at1, . . . ,atn)t1. (D.2)

Note that (2t1ϕ∨2t1ψ) → 2t1(ϕ∨ψ) is a theorem in our logic. Combining
this with Eq. (D.2) gives 2t1 pre f orm(I). The K-axiom is equivalent to (2t1ϕ∧
3t1ψ)→3t1(ϕ∧ψ). Therefore, from 3t1do(at1)t1 and 2t1 pre f orm(I) we obtain
3t1(do(at1)t1 ∧ pre f orm(I)). Let ϕ = do(at1)t1 and pre f orm(I) = ψ1∨ . . .∨ψn.
We can rewrite 3t1(ϕ∧ (ψ1∨ . . .∨ψn) to 3t1(ϕ∧ψ1)∨ . . .∨3t(ϕ∧ψn). Using
Axiom (A12), we obtain

3t+1
∨

pre(at1+1, . . . ,atn)t1+1 (D.3)

In each of the disjuncts of Eq. (D.3). In case t1 + 1 < t2, we make another case
distinction on at1+1: for each case we apply the same procedure as before and
we obtain pre(at1+2, . . . ,atn)t1+2 in each case distinction. Thus we can derive this
formula. We can repeat this procedure until t1+ i = t2. This means we have shown
that

pre f orm(I)→3t2 pre f orm(I′). (D.4)

We remains to show is that 30 pre f orm(I)→30 pre f orm(I′). Let ϕ= pre f orm(I)
and ψ=3t2 pre f orm(I′). Using Necessitation and contraposition, we have 20(¬ψ→
¬ϕ). Using the K-axiom and contraposition again, we obtain 30ϕ→ 30ψ, i.e.
Cohere(I)→ 303t2 pre f orm(I′). 303t2 pre f orm(I′) derives 30 pre f orm(I′), so
Cohere(I)→Cohere(I′) is a theorem. Hence, by the deduction theorem, Cohere(I)`
Cohere(I′).

2. Case 2: I′ = I\{(btn, tn)}. Using Axiom (A11).

154 Chapter D Proofs

3. Case 3: I′ = I\{(bti, ti)} with t1 < i < tn. Note that pre f orm(I)→ pre f orm(I′)
is a theorem of our logic. Thus, using the same technique as in case 1, we ob-
tain `Cohere(I)→Cohere(I′), and again by the deduction theorem, Cohere(I) `
Cohere(I′).

Proposition 6.3. Given some belief-intention database (SB, I), if (SB, I) is coherent,
then WB(SB, I) is consistent.

Proof. First we show that pre(a0, . . . ,am)t `3t(do(a)t ∧do(a1)t+1∧ . . .∧do(am)t+m).
Therefore, suppose (1)pre(a0, . . . ,am)t . Applying Axiom A11 m times gives pre(a0)t .
By Axiom A8 we obtain (2) 3tdo(a0)t . From (1) and (2) and by the fact that pre(a0, . . . ,am)t ≡
3t pre(a0, . . . ,am)t , we derive (3) 3t(pre(at+1, . . . ,am)t+1 ∧ do(a0)t). Applying the
same procedure to pre(at+1, . . . ,am)t+1 iteratively until there are not pre formulas left,
we obtain 3t(do(a0)t ∧3t+1(do(a1)t+1∧ . . .)). By taking the contrapositive of Axiom
A3 repeatedly we obtain 3t(do(a0)t ∧3t(do(a1)t+1 ∧ . . .)). Rewriting this and using
transitivity (i.e. 3t3tϕ→3tϕ, which isn’t an axiom but can be derived from KT5) we
obtain 3t(do(a)t ∧do(a1)t+1∧ . . .∧do(am)t+m), i.e. 3t

∧m
k=0 do(ak)t+k.

Next, let I = {(bt1, t1), . . . ,(btn, tn)} with t1 < .. . < tn. By the fact that pre(a0, . . . ,am)t `∧m
k=0 do(ak)t+k, Cohere(I) (Def. 11) implies

30
∨

ak∈Act:k 6∈{t1,...,tk}
ak=bk:k∈{t1,...,tn}

3t1(do(at1)t1 ∧do(at1+1)t1+1∧ . . .∧do(atn)tn

Consequently, Cohere(I) implies 303t1
∧n

k=1 do(btk)tk , and by (A3) and transitivity this
implies 30

∧
(a,t)∈I do(a)t . Therefore, if (B, I) is coherent, then the set B∪{30

∧
(a,t)∈I do(a)t}

is consistent. By the completeness theorem, this means that there exists a model m =
(T,π) such that m |= B and m |= 30

∧
(a,t)∈I do(a)t . Since B is a strong belief set, it

follows that for all π′ ∈ T : T,π′ |= B. Since m |= 30
∧

(a,t)∈I do(a)t , there exists some
π′′ ∈ T with T,π′′ |=

∧
(a,t)∈I do(a)t . But then also T,π′′ |= B, so there exists some model

(T,π′′) with T,π′′ |= B and T,π′′ |=
∧

(a,t)∈I do(a)t . By the completeness theorem we
obtain that B∪{

∧
(a,t)∈I do(a)t} is consistent, hence WB(B, I) is consistent.

D.3 Representation theorems proofs

Recall that Mod(ϕ) is the set of models of ϕ. Similarly, given some t-restricted PAL
formula ϕ, we define Mod|t(ϕ) as the set of t-restricted models of ϕ. Recall from the
paper that Ext(MSB|t) is the set of all possible extensions of a set of bounded model of
strong beliefs MSB|t to models, i.e.

Ext(MSB|t) = {m ∈M | m|t ∈MSB|t}.

Note that Ext is defined on the sets of bounded models of strong beliefs only. In order
to simplify notation in the proof of the representation theorem, we define the following
abbreviation:

D.3 Representation theorems proofs 155

Given a set of restricted models {m|t1 , . . . ,m
|t
n}, with m|ti = (T |ti ,π

|t
i), we introduce

Ext(m|t1 , . . . ,m
|t
n) as:

Ext(m|t1 , . . . ,m
|t
n) := Ext({(T |t ,π|t) |

n∨
k=1

T |t = T |ti }). (D.5)

Lemma 6.4. Given a t-bounded msb set MSB|t , there exists a strong belief formula
f orm(MSB|t) ∈ SB such that Mod(f orm(MSB|t)) = Ext(MSB|t).

Proof. For a given T |t we define the strong belief formula

f orm(T |t) =
∧

π|t ′∈T |t
30α

π|t ′ ∧
∧

π|t ′ 6∈T |t
¬30α

π|t ′,

where

α
π|t =

t∧
n=0

 ∧
χ∈v(π|t n)

χn∧
∧

χ 6∈v(π|t n)

¬χn∧
∧

act(π|t n)=a

do(a)n

 .

Intuitively, f orm(T |t) is a strong belief formula describing all of the paths of T up to t.
Each α

π|t is a formula describing the path π up to t: It contains all propositions that are
true and false at each time moment, and all actions that are executed. Note that Axiom
A7 of PAL-P ensures that only one action can be executed per time moment.

Let T ′ be a tree. From the construction of the formula f orm(T |t) it follows that if T |t ′ =
T |t , then for every π′ ∈ T ′ we have (T ′,π′) |= f orm(T |t). On the other hand, if T |t ′ 6= T |t ,
then there is π such that either π|t ∈ T |t \T |t ′ or π|t ∈ T |t ′ \T |t . Suppose that π|t ∈ T |t \
T |t ′. Then for any π ∈ T ′ we have (T ′,π′) 6|= 30α

π|t , so (T ′,π′) 6|= f orm(T |t). Similarly,
if π|t ∈ T |t ′ \T |t , then (T ′,π) 6|= ¬30α

π|t , so again we have (T ′,π) 6|= f orm(T |t). Thus,
we proved

Mod(f orm(T |t)) = Ext({(T |t ,π|t) ∈M|t | π|t ∈ T |t}).

Now we define

f orm(M|t SB) =
∨
{ f orm(T |t) | (T |t ,π|t) ∈M|t SB}.

Note that our set of propositional letters is finite, and that we have finitely many deter-
ministic actions, so M|t SB is a finite set. Consequently, the above disjunction is finite.

Finally, we have

Mod(f orm(M|t SB))

=
⋃
{Mod(f orm(T |t)) | (T |t ,π|t) ∈M|t SB}

=
⋃

Ext({(T |t ,π|t) ∈M|t SB | π|t ∈ T |t})

= Ext(M|t SB).

Note that f orm is defined on the set of bounded models of strong beliefs only. In order
to simplify notation in the proof of the representation theorem, we define the following

156 Chapter D Proofs

abbreviation:

Given a set of models {m1, . . . ,mn}, with mi = (Ti,πi), we introduce f orm(m1, . . . ,mn)
as:

f orm(m1, . . . ,mn) := f orm({(T |t ,π|t) |
n∨
i

T |t = T |ti }). (D.6)

Lemma D.14. If ϕ ∈ Bt and T |t1 = T |t2 , then (T1,π1) |= ϕ iff (T2,π2) |= ϕ.

Proof. By induction on the complexity of ϕ.

Corollary 6.1. Given a t-bounded set of strong beliefs SB|t , there exists a strong belief
formula ψ ∈ SB such that SB|t = {ϕ | ψ ` ϕ}.

Proof. For a given belief set B, from Lemma D.14 follows that Mod|t(B) is a set of
t-bounded models of a strong beliefs such that Ext(Mod|t(B)) = Mod(B). If ψ =
f orm(Mod|t(B)), then form Lemma 6.4 we obtain Mod(ψ) = Mod(B), and by the com-
pleteness theorem, B =Cl(ψ).

Note that for a formula ϕ ∈ Bt , the satisfiability of the formula in a model m depends
only on the paths in its restricted counterpart m|t , for a set of intentions bounded up to t
so we can write that

(M|t , I) is coherent iff (M, I) is coherent. (D.7)

Definition 6.13 (Faithful assignment). A faithful assignment is a function that assigns to
each strong belief formula ψ ∈ SB|t a total pre-order ≤t

ψ over M and to each intention
database I ∈ D|t a selection function γt

I and satisfies the following conditions:

1. If m1,m2 ∈Mod(ψ), then m1 ≤t
ψ m2 and m2 ≤t

ψ m1.

2. If m1 ∈Mod(ψ) and m2 6∈Mod(ψ), then m1 < m2.

3. If ψ≡ φ, then ≤t
ψ=≤t

φ
.

4. If T |t = T |t2 , then (T,π)≤t
ψ (T2,π2) and (T2,π2)≤t

ψ (T,π).

Theorem 6.1 (Representation Theorem). A belief-intention revision operator ∗t satisfies
postulates (P1)-(P12) iff there exists a faithful assignment that maps each ψ to a total
pre-order ≤t

ψ and each I to a selection function γt
I such that if (ψ, I) ∗t (ϕ, i) = (ψ′, I′),

then:

1. Mod(ψ′) = min(Mod(ϕ),≤t
ψ)

2. I′ = γt
I(Mod(ψ′), i)

D.3 Representation theorems proofs 157

Proof. “⇒′′: Suppose that some agent revision operator ∗t satisfies postulates (P1)-
(P12). Given models m1 and m2, let (ψ, /0) ∗t (f orm(m1,m2),ε) = (ψ′, /0) (note that we
use the abbreviation (D.6) for f orm). We define≤t

ψ by m1≤t
ψ m2 iff m1 |=ψ or m1 |=ψ′.

We also define γt
I by γt

I(MSB|t , i) = I′, where (f orm(MSB|t), I)∗t (>, i) = (ψ2, I′) (note
that ψ2 ≡ f orm(MSB|t)).

In order to prove that the assignment is faithful for ≤t
ψ, we define ψ ◦t ϕ = ψ′ when

(ψ, /0) ∗t (ϕ,ε) = (ψ′, /0). We can now prove that postulates (P1)-(P6) for ∗t imply the
Katsuno and Mendelzon postulates (R1)-(R6).

(R1) ψ◦t ϕ implies ϕ

(R2) If ψ∧ϕ is satisfiable, then ψ◦t ϕ≡ ψ∧ϕ

(R3) If ϕ is satisfiable, then ψ◦t ϕ is also satisfiable

(R4) If ψ≡ ψ′ and ϕ≡ ϕ′, then ψ◦t ϕ≡ ψ′ ◦t ϕ′

(R5) (ψ◦t ϕ)∧ϕ′ implies ψ◦t (ϕ∧ϕ′)

(R6) If (ψ◦t ϕ)∧ϕ′ is satisfiable, then ψ◦t (ϕ∧ϕ′) implies (ψ◦t ϕ)∧ϕ′

We show that (R5) holds, i.e. (ψ◦t ϕ)∧ϕ′ implies ψ◦t (ϕ∧ϕ′) holds, the other cases are
similar. Let us denote with ψ′ the formula ψ◦t ϕ, with ψ

′ the formula ψ◦t (ϕ∧ϕ′), and
with ϕ the formula ϕ∧ϕ′. Then we have (ψ, /0)∗t (ϕ,ε) = (ψ′, /0) and (ψ, /0)∗t (ϕ,ε) =
(ψ′, /0). Then by postulate (P5), ψ′∧ϕ′ implies ψ

′, or equivalently (ψ◦t ϕ)∧ϕ′ implies
ψ◦t (ϕ∧ϕ′).

Modifying the proof technique of Katsuno and Mendelzon, we show that 1)≤t
ψ is a total

pre-order, 2) the assignment ψ to≤t
ψ is faithful, 3) Mod(ψ′) = min(Mod(ϕ),≤t

ψ). Then
we show that 4) γt

I is a selection function and 5) I′ = γt
I(Mod|t(ψ′), i).

1. To show: ≤t
ψ is a total pre-order.

• To show: Totality and reflexivity. From (R1) and (R3): Mod(ψ◦t f orm(m1,m2))

is a nonempty subset of Ext(m|t1 ,m
|t
2) (note that we use the abbreviation

(D.5) for Ext). Therefore, for each m ∈ Ext(m|t1) and m′ ∈ Ext(m|t2), we
have that either m ≤t

ψ m′ or m′ ≤t
ψ m. We now show, without loss of gen-

erality, that for each m,m′ ∈ Ext(m|t1), both m ≤t
ψ m′ and m′ ≤t

ψ m hold.

Therefore, let m,m′ ∈ Ext(m|t1), so m|t = m|t ′. By Lemma 3 of the pa-
per, Mod(f orm(m|t)) = Ext(m|t) = Ext(m|t ′) = Mod(f orm(m|t ′)). Hence,
f orm(m) ≡ f orm(m′), so f orm(m,m′) ≡ f orm(m). By (R4): Mod(ψ ◦t
f orm(m|t)) = Mod(ψ ◦t f orm(m,m′))). By (R1), m ∈ Mod(ψ ◦t f orm(m),
so m ∈ Mod(ψ ◦t f orm(m,m′)). Hence, by the definition of ≤t

ψ: m ≤t
ψ m′.

We can prove m′ ≤t
ψ m similarly. This proves that ≤t

ψ is total, which implies
reflexivity.

• To show: Transitivity. Assume m1 ≤t
ψ m2 and m2 ≤t

ψ m3. We show m1 ≤t
ψ

m3. There are three cases to consider:

(a) m1 ∈Mod(ψ). m1 ≤t
ψ m3 follows from the definition of ≤t

ψ.

158 Chapter D Proofs

(b) m1 6∈ Mod(ψ) and m2 ∈ Mod(ψ). Since Mod(ψ∧ f orm(m1,m2)) =

Ext(m|t2) holds, Mod(ψ◦t f orm(m1,m2)) = Ext(m|t2) follows from (R2).
Thus m1 6≤t

ψ m2 follows from m1 6∈Mod(ψ). This contradicts m1≤t
ψ m2,

so this case is not possible.
(c) m1 6∈Mod(ψ) and m2 6∈Mod(ψ). By (R1) and (R3), Mod(ψ◦t f orm(m1,m2,m3))

is a nonempty subset of Ext(m|t1 ,m
|t
2 ,m

|t
3). We now consider two sub-

cases.
i. Mod(ψ◦t f orm(m1,m2,m3))∩Ext(m|t1 ,m

|t
2)= /0. In this case, Mod(ψ◦t

f orm(m1,m2,m3)) = Ext(m|t3) holds. If we regard ϕ and ϕ′ as
f orm(m1,m2,m3) and f orm(m2,m3) respectively in Conditions (R5)
and (R6), we obtain

Mod(ψ◦t f orm(m1,m2,m3))∩Ext(m|t2 ,m
|t
2) = Mod(ψ◦t f orm(m2,m3)).

Hence, Mod(ψ◦t f orm(m2,m3))=Ext(m|t3). This contradicts m2≤t
ψ

m3 and m2 6∈Mod(ψ). Thus, this subcase is not possible.

ii. Mod(ψ ◦t f orm(m1,m2,m3))∩Ext(m|t1 ,m
|t
2) 6= /0. Since m1 ≤t

ψ m2
and m1 6∈Mod(ψ), m1 ∈Mod(ψ◦t f orm(m1,m2)) holds. Hence, by
regarding ϕ and ϕ′ as f orm(m1,m2,m3) and f orm(m1,m2) respec-
tively in Conditions (R5) and (R6), we obtain

Mod(ψ◦t f orm(m1,m2,m3))∩Ext(m|t1 ,m
|t
2) = Mod(ψ◦t f orm(m1,m2)).

Thus,

m1 ∈Mod(ψ◦t f orm(m1,m2,m3))∩Ext(m|t1 ,m
|t
2)

holds. By using conditions (R5) and (R6) again in a similar way,
we can obtain m1 ∈Mod(ψ◦t f orm(m1,m3)). Therefore, m1≤t

ψ m3
holds.

2. To show: The assignment mapping ψ to ≤t
ψ is faithful. We prove the four condi-

tions separately

(a) The first condition follows from the definition of ≤t
ψ.

(b) For the second condition, assume that m ∈Mod(ψ) and m′ 6∈Mod(ψ). Then
Mod(ψ◦t f orm(m,m′)) = Ext(m|t) follows from (R2). Therefore, m <t

ψ m′

holds.

(c) The third condition follows from (R4).

(d) For the fourth condition, for m1 = (T1,π1) and m2 = (T2,π2) such that T |t1 =

T |t2 , let ψ′ be as above. Since ψ,ψ′ ∈ Bt , by Lemma D.14 we obtain m1 |= ψ

iff m2 |= ψ and m1 |= ψ′ iff m2 |= ψ′, so m1 ≤t
ψ m2 and m2 ≤t

ψ m1.

3. To show: Mod(ψ′)=min(Mod(ϕ),≤t
ψ). Note that this can be equivalently rewrit-

ten as Mod(ψ◦t ϕ) = min(Mod(ϕ),≤t
ψ). If ϕ is unsatisfiable then both are empty.

So we assume ϕ is satisfiable. We show both containments separately.

D.3 Representation theorems proofs 159

• To show: Mod(ψ◦t ϕ) ⊆ min(Mod(ϕ),≤t
ψ). Assume for contradiction that

m ∈ Mod(ψ ◦t ϕ) and m 6∈ min(Mod(ϕ),≤t
ψ). By condition (R1), m is a

model of ϕ. Hence, there is a model m′ of ϕ such that m′ <t
ψ m. We consider

two cases:

(a) m′ ∈ Mod(ψ). Since m′ ∈ Mod(ϕ), ψ∧ ϕ is satisfiable. Hence, by
condition (R2), ψ◦t ϕ≡ ψ∧ϕ holds. Thus, m ∈Mod(ψ) follows from
m ∈Mod(ψ◦t ϕ). Therefore, m≤t

ψ m′ holds. This contradicts m′ <t
ψ m.

(b) Mod(ψ◦t f orm(m,m′)) = Ext(m|t). Since both m and m′ are models of
ϕ, ϕ∧ f orm(m,m′)≡ f orm(m,m′) holds. Thus,

Mod(ψ◦t ϕ)∩Ext(m|t ,m|t ′)⊆Mod(ψ◦t f orm(m,m′))

follows from condition (R5). Since we assume Mod(ψ◦t f orm(m,m′))=
Ext(m|t ′), we obtain m 6∈Mod(ψ◦t ϕ). This is a contradiction.

• To prove: min(Mod(ϕ),≤t
ψ)⊆Mod(ψ◦t ϕ). Assume for contradiction that

m ∈ min(Mod(ϕ),≤t
ψ) and m 6∈ Mod(ψ ◦t ϕ). Since we also assume that

ϕ is satisfiable, it follows from condition (R3) that there is an interpreta-
tion m′ such that m′ ∈ Mod(ψ ◦t ϕ). Since both m and m′ are models of ϕ,
f orm(m,m′)∧ϕ ≡ f orm(m,m′) holds. By using conditions (R5) and (R6),
we obtain

Mod(ψ◦t ϕ)∩Ext(m|t ,m|t ′) = Mod(ψ◦t f orm(m,m′)).

Since m 6∈Mod(ψ ◦t ϕ), Mod(ψ ◦t f orm(m,m′)) = Ext(m|t ′) holds. Hence,
m′ ≤t

ψ m holds. On the other hand, since m is minimal in Mod(ϕ) with
respect to ≤t

ψ, m ≤t
ψ m′ holds. Since Mod(ψ ◦t f orm(m,m′)) = Ext(m|t ′),

m ∈ Mod(ψ) holds. Therefore, m ∈ Mod(ψ ◦t ϕ) follows from condition
(R2). This is a contradiction.

4. To show: γt
I is a selection function. This is direct consequence of the completeness

theorem and the postulates (P7)-(P10) and (P12), taking into account (D.3). For
example, if (P7) holds, then ψ′ is consistent with Cohere(I′), so by completeness
there is a model of both ψ′ and Cohere(I′). since Mod(ψ′) = min(Mod(ϕ),≤t

ψ),
we obtain that (Mod(ψ′), I′) is coherent.

5. To show: I′ = γt
I(Mod|t(ψ′), i). By our definition of γt

I we have that (ψ′, I) ∗t
(>, i) = (ψ,γt

I(Mod(ψ′), i)) (recall that ψ′ ≡ ψ2). Since (ψ, I) ∗t (ϕ, i) = (ψ′, I′),
by (P11) we obtain that I′ = γt

I(Mod(ψ′), i).

“⇐”: Assume that there is a faithful assignment that maps ψ to a total pre-order ≤t
ψ and

I to a selection function γt
I . We define the t-bounded revision operator ∗t as follows:

(ψ,C)∗t (ϕ,c) = (f orm(min(Mod|t(ϕ),≤t
ψ),γ

t
I(min(Mod|t(ϕ),≤t

ψ), i)).

First we show that the operator is well correctly defined, i.e. that min(Mod|t(ϕ),≤t
ψ) is a

set of t-bounded models of strong beliefs. Let T =T ′. Since ϕ∈B|t , by Lemma D.14 we
obtain that (T,π) |= ϕ iff (T ′,π′) |= ϕ. Now suppose that (T,π) ∈min(Mod(ϕ),≤t

ψ). If
(T ′,π′) /∈min(Mod(ϕ),≤t

ψ), then (T,π)< (T ′,π′), which is impossible by the definition

160 Chapter D Proofs

of faithful assignment. Thus, min(Mod|t(ϕ),≤t
ψ) is a set of t-bounded models of strong

beliefs.

Let us now prove that ∗t satisfies the postulates (P1)-(P-12). In order to prove the first
six postulates, we define the operator ◦t by ψ◦t ϕ = f orm(min(Mod|t(ϕ),≤t

ψ)). Let use
show that ◦t satisfies conditions (R1)-(R6) of KM (see the (⇒) part of the proof). It is
obvious that condition (R1) follows from the definition of the revision operator ◦t . It
is also obvious that conditions (R3) and (R4) follow from the definition of the faithful
assignment. What remains to show is condition (R2), (R5), and (R6).

• To prove: (R2). It suffices to show if Mod(ψ∧ϕ) is not empty then Mod(ψ∧ϕ) =
min(Mod(ϕ),≤t

ψ). Mod(ψ∧ϕ)⊆min(Mod(ϕ),≤t
ψ) follows from the conditions

of the faithful assignment. To prove the other containment, we assume that m ∈
min(Mod(ϕ),≤t

ψ) and m 6∈ Mod(ϕ∧ϕ). Since Mod(ψ∧ϕ) is not empty, there
is a model m′ ∈ Mod(ψ∧ϕ). Then m 6≤t

ψ m′ follows from the conditions of the
faithful assignment. Moreover, m′≤t

ψ m follows from the conditions of the faithful
assignment. Hence, m is not minimal in Mod(ϕ) with respect to ≤t

ψ. This is a
contradiction.

• To prove: (R5) and (R6). It is obvious that if (ψ ◦t ϕ)∧ϕ′ is unsatisfiable then
(R6) holds. Hence, it suffices to show that if min(Mod(µ),≤t

ψ)∩Mod(ϕ′) is not
empty then

min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′) = min(Mod(ϕ∧ϕ

′),≤t
ψ)

holds. Assume that m ∈ min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′) and m 6∈ min(Mod(ϕ∧

ϕ′),≤t
ψ). Then, since m∈Mod(ϕ∧ϕ′), there is an interpretation m′ such that m′ ∈

Mod(ϕ∧ϕ′) and m′ <ψ m. This contradicts m ∈ min(Mod(ϕ),≤t
ψ). Therefore,

we obtain

min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′)⊆min(Mod(ϕ∧ϕ

′),≤t
ψ).

To prove the other containment, we assume that m 6∈min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′)

and m∈min(Mod(ϕ∧ϕ′),≤t
ψ). Since m∈Mod(ϕ′),m 6∈min(Mod(ϕ),≤t

ψ) holds.
Since we assume that min(Mod(ϕ),≤t

ψ)∩Mod(ϕ′) is not empty, suppose that m′

is an element of min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′). Then m′ ∈ Mod(ϕ∧ ϕ′) holds.

Since we assume that m ∈min(Mod(ϕ∧ϕ′),≤t
ψ) and ≤t

ψ is total, m≤t
ψ m′ holds.

Thus, m ∈min(Mod(ϕ),≤t
ψ) follows from m′ ∈min(Mod(ϕ),≤t

ψ). This is a con-
tradiction.

Note that the conditions (R1)-(R6) imply the conditions (P1)-(P6). For example, sup-
pose (R3) and let (ψ, I)∗t (ϕ, i)= (ψ′, I′). Then ψ′= f orm(min(Mod(ϕ),≤t

ψ)∩Mod(ϕ′))=
ψ◦t ϕ so if ϕ is satisfiable, ψ′ is satisfiable as well. Thus, (P3) holds.

The postulates (P7)-(P10) follow directly (using the completeness theorem and taking
into account (D.3)) from the conditions the conditions 1-4 of the definition of selection
function, and (P12) follows from the fourth condition as well.

Finally, let us prove (P11). Let (ψ, I)∗t (ϕ, i) = (ψ′, I′) and (ψ, I)∗t (ϕ, i) = (ψ′, I′), and
suppose that I = I, i = i, and ψ′ ≡ ψ

′. Then Mod(ψ′) = Mod(ψ′), i.e. min(Mod(ϕ),≤t
ψ

) = min(Mod(ϕ′),≤t
ψ′), so

I′ = γ
t
I(min(Mod(ϕ),≤t

ψ), i) = γ
t
I(min(Mod(ϕ′),≤t

ψ′), i) = I′.

D.3 Representation theorems proofs 161

Theorem 6.2 (Representation Theorem). A t-bounded revision operator ◦t satisfies pos-
tulates (R*1)-(R*6) precisely when there exists a t-bounded faithful assignment on epis-
temic states that maps each epistemic state Ψ to a total pre-order ≤t

Ψ
such that

Mod(Ψ◦t ϕ) = min(Mod(ϕ),≤t
Ψ)

Proof. The proof is very similar to that of Darwiche and Pearl, where we apply the
same modifications to the proof as we did in the proof of Katsuno and Mendelzon (The-
orem 6.1).

Theorem 6.3. Suppose that a t-bounded revision operator on epistemic states satisfies
postulates (R*1)-(R*6). The operator satisfies postulates (C1)-(C4) iff the operator and
its corresponding faithful assignment satisfy:

CR1 If m1 |= ϕ and m2 |= ϕ, then m1 ≤t
Ψ

m2 iff m1 ≤t
Ψ◦ϕ m2.

CR2 If m1 6|= ϕ and m2 6|= ϕ, then m1 ≤t
Ψ

m2 iff m1 ≤t
Ψ◦ϕ m2.

CR3 If m1 |= ϕ, m2 6|= ϕ and m1 <
t
Ψ

m2, then m1 <
t
Ψ◦ϕ m2.

CR4 If m1 |= ϕ, m2 6|= ϕ and m1 ≤t
Ψ

m2, then m1 ≤t
Ψ◦ϕ m2.

Proof. 1. Postulate (C1) is equivalent to (CR1).

(⇒) Suppose that (C1) holds and m,m′ |=ϕ. Let α= f orm(M|t ,M|t ′). By Lemma
3, Mod(α) = Ext(M|t)∪Ext(M|t ′). If m′′ ∈ Ext(M|t), then M|t = M|t ′′, so by
Lemma 2 we obtain m′′ |= ϕ. Similarly, if m′′ ∈ Ext(M|t ′), then m′′ |= ϕ, so
α |= ϕ. By (C1), (Ψ◦t ϕ)◦t α≡Ψ◦t α. In other words, min(Mod(α),≤t

Ψ◦tϕ
) = min(Mod(α),≤t

Ψ
). Consequently, m≤t

Ψ◦tϕ m′ iff m≤t
Ψ

m′.

(⇐) The proofs of this direction are identical to those of Darwiche and Pearl. We
give this case as an illustration but omit the other three. Suppose that (CR1)
holds and assume ϕ |= ϕ′. We want to show that Ψ ◦t ϕ ≡ (Ψ ◦t ϕ′) ◦t ϕ.
Condition (CR1) implies that ≤Ψ and ≤Ψ◦tµ are equivalent for all m1,m2 ∈
Mod(ϕ) since ϕ |= ϕ′. Hence Mod(Ψ ◦t ϕ) = min(ϕ,≤t

Ψ
) = min(ϕ,≤t

Ψ◦tϕ′
) = Mod((Ψ◦t ϕ′)◦t ϕ) and Ψ◦t ϕ≡ (Ψ◦t ϕ′)◦t ϕ.

2. Postulate (C2) is equivalent to (CR2): Symmetric to (C1) and (CR1).

3. Postulate (C3) is equivalent to (CR3).

(⇒) Suppose that (C3) holds, m |=ϕ, m′ 6|=ϕ, and m<Ψ m′. We want to show that
m <Ψ◦tϕ m′. Let α = f orm(M|t ,M|t ′). By Lemma 3: Mod(α) = Ext(M|t)∪
Ext(M|t ′). From Ext(M|t) |=α∧ϕ, m<t

Ψ
m′, and Mod(α∧¬ϕ) =Ext(M|t ′),

we obtain Ψ◦t α |= ϕ. By (C3): (Ψ◦t ϕ)◦t α |= ϕ. Therefore, since Mod(α∧
ϕ) = Ext(M|t) and Mod(α∧
negϕ) = Ext(M|t ′), we have m1 <

t
Ψ◦tϕ m2 for each m1 ∈ Ext(M|t1) and m2 ∈

Ext(M|t2). In particular, since m ∈ Ext(M|t1) and m′ ∈ Ext(M|t2), m <t
Ψ◦tϕ

m′ holds.

162 Chapter D Proofs

(⇐) Identical to the DP proof.

4. Postulate (C4) is equivalent to (CR4).

⇒ Suppose (C4) holds, m |= ϕ and m′ 6|= ϕ. We prove this by taking the con-
trapositive. Therefore, suppose m′ <t

Ψ◦tϕ m. We want to show that m′ <t
Ψ

m.
Let α = f orm(M|t ,M|t ′). Since Ext(M|t ′) |= α∧¬ϕ, m2 <Ψ◦tϕ m1, and
Mod(α∧ϕ) = Ext(M|t), we have (Ψ◦t ϕ)◦t α |= ¬ϕ. From (C4): Ψ◦t α |=
¬ϕ. So, from Mod(α∧¬ϕ) = Ext(M|t ′) and Mod(α∧ϕ) = Ext(M|t), we
obtain m1 ≤t

ψ m2 for every m1 ∈ Ext(M|t) and m2 ∈ Ext(M|t ′). Finally, since
m ∈ Ext(M|t) and m′ ∈ Ext(M|t ′), we obtain m1 ≤t

ψ m2.

⇐ Identical to the DP proof.

E

Tileworld Experiments

In this Appendix we present some illustrations of our simulation environments, and
present graphs from some of our simulation results. The corresponding text can be
found in Chapter 6, Section 6.5.2.

Figure E.1: A simulated Markov Decision Process in our software. Red circles denote MDP
states, blues triangles denote Q-states, and green arrows denote the optimal policy computed
using value iteration. Rewards and probabilities are denotes respectively next to the states and
arcs.

Figure E.2: Tileworld representation in our software as an MDP (left), and in the more familiar
Tileworld format (right), omitting Q-states (since all probabilities are 1).

163

164 Chapter E Tileworld Experiments

Figure E.3: Angelic planner vs Bold agent (p = 2). Following Kinny and Georgeff, we plot the
rate of the world change γ against the agent’s effectiveness ε, and we plot values of γ in log10.

Figure E.4: Angelic planner vs Bold agent vs Reactive agent (p = 4). The rate of the world
change γ is plotted against the agent’s effectiveness ε.

Chapter E Tileworld Experiments 165

Figure E.5: Angelic planner vs Reactive agent (p = 2,w = 5×5,g = [10,20], l = [10,20]). The
rate of the world change γ is plotted against the agent’s effectiveness ε.

Figure E.6: Angelic planner vs Bold agent vs Reactive agent (p = 2,w = 5× 5,g = [3,5], l =
[5,8]). The planning time p is plotted against the agent’s effectiveness ε.

Bibliography

[ABC05] Katie Atkinson and Trevor Bench-Capon. Legal case-based reasoning
as practical reasoning. Artificial Intelligence and Law, 13(1):93–131,
2005.

[ABC07] Katie Atkinson and Trevor Bench-Capon. Practical reasoning as pre-
sumptive argumentation using action based alternating transition sys-
tems. Artificial Intelligence, 171(10):855–874, 2007.

[AC02] Leila Amgoud and Claudette Cayrol. A reasoning model based on
the production of acceptable arguments. Annals of Mathematics and
Artificial Intelligence, 34(1-3):197–215, 2002.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoreti-
cal Computer Science, 126:183–235, 1994.

[AFH96] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of
relaxing punctuality. J. ACM, 43(1):116–146, January 1996.

[AGH+10] Daniel Amyot, Sepideh Ghanavati, Jennifer Horkoff, Gunter Muss-
bacher, Liam Peyton, and Eric S. K. Yu. Evaluating goal models within
the goal-oriented requirement language. International Journal of Intel-
ligent Systems, 25:841–877, August 2010.

[AGM85] C. E. Alchourrön, P. Gärdenfors, and D. Makinson. On the logic of the-
ory change: Partial meet contractions and revision functions. Journal
of Symbolic Logic, pages 510–530, 1985.

[AH90] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complex-
ity and expressiveness. Information and Computation, 104:390–401,
1990.

[AHK98] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-
time temporal logic. In Revised Lectures from the International Sympo-
sium on Compositionality: The Significant Difference, COMPOS’97,
pages 23–60, London, UK, UK, 1998. Springer-Verlag.

[BCK12] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Professional, 3rd edition, 2012.

[BD94] Mark S. Boddy and Thomas L. Dean. Deliberation scheduling for prob-
lem solving in time-constrained environments. Artif. Intell., 67(2):245–
285, 1994.

167

168 Bibliography

[Ber08] Brian Berenbach. The other skills of the software architect. In 1st Int.
Workshop on Leadership and Management in Software Architecture,
pages 7–12. ACM, 2008.

[BG13] Nils Bulling and Valentin Goranko. How to be both rich and happy:
Combining quantitative and qualitative strategic reasoning about multi-
player games (extended abstract). In Fabio Mogavero, Aniello Murano,
and Moshe Y. Vardi, editors, SR, volume 112 of EPTCS, pages 33–41,
2013.

[BH95] Jonathan P Bowen and Michael G Hinchey. Seven more myths of for-
mal methods. IEEE software, 12(4):34–41, July 1995.

[BIP88] Michael E Bratman, David J Israel, and Martha E Pollack. Plans
and resource-bounded practical reasoning. Computational intelligence,
4(3):349–355, 1988.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[BMN00] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time
system specification. ACM Comput. Surv., 32(1):12–42, March 2000.

[BNS03] P. Bernus, L. Nemes, and G. Schmidt, editors. Handbook on Enter-
prise Architecture. International Handbooks on Information Systems.
Springer, Berlin, Germany, 2003.

[Bra87] Michael E. Bratman. Intention, plans, and practical reason. Harvard
University Press, Cambridge, MA, 1987.

[Bro99] Rodney Allen Brooks. Cambrian intelligence: the early history of the
new AI, volume 1. MIT press Cambridge, MA, 1999.

[BS02] Valerie Belton and Theodor Stewart. Multiple criteria decision anal-
ysis: an integrated approach. Springer Science & Business Media,
2002.

[Byl94] Tom Bylander. The computational complexity of propositional strips
planning. Artificial Intelligence, 69:165–204, 1994.

[CA09] Dan Cartwright and Katie Atkinson. Using computational argumenta-
tion to support e-participation. IEEE Intelligent Systems, 24(5):42–52,
2009.

[CD06] J.D. Cummins and N.A. Doherty. The economics of insurance inter-
mediaries. The Journal of Risk and Insurance, 73(3):359–396, 2006.

[Cha87] David Chapman. Planning for conjunctive goals. Artificial intelligence,
32(3):333–377, 1987.

[CKI88] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the soft-
ware design process for large systems. Communications of the ACM,
31(11):1268–1287, 1988.

Bibliography 169

[CKM02] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards
requirements-driven information systems engineering: the tropos
project. Information systems, 27(6):365–389, 2002.

[CL90a] Philip R Cohen and Hector J Levesque. Intention is choice with com-
mitment. Artificial Intelligence, 42(2-3):213–261, 1990.

[CL90b] Philip R. Cohen and Hector J. Levesque. Intention is choice with com-
mitment. Artif. Intell., 42(2–3):213–261, 1990.

[CNYM12] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-
functional requirements in software engineering, volume 5. Springer
Science & Business Media, 2012.

[Dan09] P Dankova. Main aspects of enterprise architecture concept. Economic
Alternatives Journal, 1(1):102–114, 2009.

[Dav63] Donald Davidson. Actions, reasons, and causes. Journal of Philoso-
phy, 60(23):685–700, 1963.

[Die08] J.L.G. Dietz. Architecture – Building strategy into design. Nether-
lands Architecture Forum, Academic Service – SDU, The Hague, The
Netherlands, 2008.

[DKKN95] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nichol-
son. Planning under time constraints in stochastic domains. Artificial
Intelligence, 76(1):35–74, 1995.

[Don04] Paolo Donzelli. A goal-driven and agent-based requirements engineer-
ing framework. Requirements Engineering, 9(1):16–39, 2004.

[Doy88] J. Doyle. Artificial intelligence and rational self-government, 1988.

[DP95] Didier Dubois and Henri Prade. Possibility theory as a basis for
qualitative decision theory. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95, pages
1924–1930, San Francisco, CA, USA, 1995. Morgan Kaufmann Pub-
lishers Inc.

[DP97] Adnan Darwiche and Judea Pearl. On the logic of iterated belief revi-
sion. Artificial Intelligence, 89(12):1 – 29, 1997.

[DPvdMM14] Jacobus Du Preez, Alta van der Merwe, and Machdel Matthee. En-
terprise architecture schools of thought: An exploratory study. In
EDOCW 2014, pages 3–12. IEEE, 2014.

[DT99] Jon Doyle and Richmond H. Thomason. Background to qualitative
decision theory. AI MAGAZINE, 20, 1999.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person
games. Artificial intelligence, 77(2):321–357, 1995.

170 Bibliography

[DvL96] Robert Darimont and Axel van Lamsweerde. Formal refinement pat-
terns for goal-driven requirements elaboration. In Proceedings of the
4th ACM SIGSOFT Symposium on Foundations of Software Engineer-
ing, SIGSOFT ’96, pages 179–190, New York, NY, USA, 1996. ACM.

[DVLF93] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-
directed requirements acquisition. Science of computer programming,
20(1):3–50, 1993.

[Eco17] The Economist. Automation and anxiety - Will smarter machines cause
mass unemployment?, February 2017. February 4.

[ET99] E. Allen Emerson and Richard J. Trefler. Parametric quantitative tem-
poral reasoning. In LICS, pages 336–343. IEEE Computer Society,
1999.

[FO17] Carl Benedikt Frey and Michael A Osborne. The future of employ-
ment: how susceptible are jobs to computerisation? Technological
Forecasting and Social Change, 114:254–280, 2017.

[GFE05] Salvatore Greco, J Figueira, and M Ehrgott. Multiple criteria decision
analysis. Springer’s International series, 2005.

[Gha13] Sepideh Ghanavati. Legal-urn framework for legal compliance of busi-
ness processes. PhD thesis, University of Ottawa, 2013.

[Gia10] R.E. Giachetti. Design of Enterprise Systems: Theory, Architecture,
and Methods. CRC Press, 2010.

[GKPW10] John Grant, Sarit Kraus, Donald Perlis, and Michael Wooldridge. Pos-
tulates for revising BDI structures. Synthese, 175(1):39–62, 2010.

[GMS05] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. Goal-
oriented requirements analysis and reasoning in the tropos methodol-
ogy. Engineering Applications of Artificial Intelligence, 18(2):159–
171, 2005.

[Got13] Joachim Gotze. The changing role of the enterprise architect. In
EDOCW 2013, pages 319–326. IEEE, 2013.

[GP11] Danny Greefhorst and Erik Proper. Architecture Principles: The Cor-
nerstones of Enterprise Architecture. Springer Publishing Company,
Incorporated, 1st edition, 2011.

[GS02] Gerd Gigerenzer and Reinhard Selten. Bounded rationality: The adap-
tive toolbox. MIT press, 2002.

[GT14] Matthias Galster and Dan Tofan. Exploring web advertising to attract
industry professionals for software engineering surveys. In Proceed-
ings of the 2nd International Workshop on Conducting Empirical Stud-
ies in Industry, pages 5–8. ACM, 2014.

Bibliography 171

[Hal90] Anthony Hall. Seven myths of formal methods. Software, IEEE,
7(5):11–19, 1990.

[Har76] Gilbert Harman. Practical reasoning. The Review of Metaphysics,
pages 431–463, 1976.

[HBJ+14] Jennifer Horkoff, Daniele Barone, Lei Jiang, Eric Yu, Daniel Amyot,
Alex Borgida, and John Mylopoulos. Strategic business modeling: rep-
resentation and reasoning. Software & Systems Modeling, 13(3):1015–
1041, 2014.

[HL04] Andreas Herzig and Dominique Longin. C&L Intention Revisited. KR,
04:527–535, 2004.

[HLPX16] Andreas Herzig, Emiliano Lorini, Laurent Perrussel, and Zhanhao
Xiao. Bdi logics for bdi architectures: Old problems, new perspec-
tives. KI - Künstliche Intelligenz, pages 1–11, 2016.

[HMLN05] Charles B Haley, Jonathan D Moffett, Robin Laney, and Bashar Nu-
seibeh. Arguing security: Validating security requirements using struc-
tured argumentation. In in Proc. of the Third Symposium on RE for
Information Security (SREIS’05), 2005.

[Hol08] Richard Holton. Partial belief, partial intention. Mind, pages 1–26,
2008.

[Hoo09] J.A.P. Hoogervorst. Enterprise Governance and Enterprise Engineer-
ing. Springer, Berlin, Germany, 2009.

[HPXZ16] Andreas Herzig, Laurent Perrussel, Zhanhao Xiao, and Dongmo
Zhang. Refinement of intentions. In European Conference on Log-
ics in Artificial Intelligence, pages 558–563. Springer, 2016.

[IJLP09] M.-E. Iacob, H. Jonkers, M.M. Lankhorst, and H.A. Proper. ArchiMate
1.0 Specification. The Open Group, 2009.

[IJLP12] M.-E. Iacob, H. Jonkers, M.M. Lankhorst, and H.A. Proper. ArchiMate
2.0 Specification. The Open Group, 2012.

[IPS10] Thomas F. Icard, Eric Pacuit, and Yoav Shoham. Joint revision of
beliefs and intention. In KR, 2010.

[ITU08] ITU-T. Recommendation Z.151 (11/08): User Requirements No-
tation (URN) – Language Definition. http://www.itu.int/rec/
T-REC-Z.151/en, 2008.

[JB05] Anton Jansen and Jan Bosch. Software architecture as a set of archi-
tectural design decisions. In Proceedings of the 5th Working IEEE/I-
FIP Conference on Software Architecture, WICSA ’05, pages 109–
120, Washington, DC, USA, 2005. IEEE Computer Society.

[JBQ12] H. Jonkers, I. Band, and D. Quartel. The ArchiSurance Case Study.
White Paper Y121, The Open Group, Spring 2012.

http://www.itu.int/rec/T-REC-Z.151/en
http://www.itu.int/rec/T-REC-Z.151/en

172 Bibliography

[JFS08] I.J. Jureta, S. Faulkner, and P.Y. Schobbens. Clear justification of mod-
eling decisions for goal-oriented requirements engineering. Require-
ments Engineering, 13(2):87–115, May 2008.

[KAV05] Stephen H Kaisler, Frank Armour, and Michael Valivullah. Enterprise
architecting: Critical problems. In System Sciences, 2005. HICSS’05.
Proceedings of the 38th Annual Hawaii International Conference on,
pages 224b–224b. IEEE, 2005.

[KL05] Evangelia Kavakli and Pericles Loucopoulos. Goal modeling in re-
quirements engineering: Analysis and critique of current methods. In
John Krogstie, Terry A. Halpin, and Keng Siau, editors, Information
Modeling Methods and Methodologies, pages 102–124. Idea Group,
2005.

[KLvV06] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up
and reasoning about architectural knowledge. In Proceedings of the
Second International Conference on Quality of Software Architectures,
QoSA’06, pages 43–58, Berlin, Heidelberg, 2006. Springer-Verlag.

[KM91] Hirofumi Katsuno and Alberto O. Mendelzon. Propositional knowl-
edge base revision and minimal change. Artificial Intelligence,
52(3):263–294, dec 1991.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Syst., 2(4):255–299, October 1990.

[KR70] Werner Kunz and Horst Rittel. Issues as elements of information sys-
tems. Working Paper 131, Institute of Urban and Regional Develop-
ment, University of California, Berkeley, California, 1970.

[Kru08] Philippe Kruchten. What do software architects really do? Journal of
Systems and Software, 81(12):2413–2416, 2008.

[KS93] Don N. Kleinmuntz and David A. Schkade. Information displays and
decision processes. Psychological Science, 4:221 – 227, 1993.

[KTZT12] Evangelos Kalampokis, Efthimios Tambouris, Maria Zotou, and Kon-
stantinos Tarabanis. The enterprise architecture competence frame-
work. Int. J. of Learning Technology, 7(1):79–94, 2012.

[Kva05] Jonas Kvarnström. TALplanner and other extensions to Temporal Ac-
tion Logic. PhD thesis, Linköpings universitet, 2005.

[Lan05a] M. Lankhorst. Enterprise architecture at work: modelling, communi-
cation, and analysis. Springer, 2005.

[Lan05b] M.M. Lankhorst, editor. Enterprise Architecture at Work: Modelling,
Communication and Analysis. Springer, Berlin, Germany, 2005.

[Lee91] Jintae Lee. Extending the potts and bruns model for recording design
rationale. In ICSE, pages 114–125, 1991.

Bibliography 173

[LH08] Emiliano Lorini and Andreas Herzig. A logic of intention and attempt.
Synthese, 163(1):45–77, 2008.

[LY04] Lin Liu and Eric Yu. Designing information systems in social con-
text: a goal and scenario modelling approach. Information systems,
29(2):187–203, 2004.

[MA09] Gunter Mussbacher and Daniel Amyot. Goal and scenario modeling,
analysis, and transformation with jUCMNav. In ICSE Companion,
pages 431–432, 2009.

[Mar78] James G March. Bounded rationality, ambiguity, and the engineering
of choice. The Bell Journal of Economics, pages 587–608, 1978.

[Mas10] Mark Mason. Sample size and saturation in PhD studies using qual-
itative interviews. In Forum Qualitative Sozialforschung/Qualitative
Social Research, volume 11, 2010.

[McB07] Matthew R McBride. The software architect. Comm. of the ACM,
50(5):75–81, 2007.

[MGABCM13] Rolando Medellin-Gasque, Katie Atkinson, Trevor Bench-Capon, and
Peter McBurney. Strategies for question selection in argumentative
dialogues about plans. Argument & Computation, 4(2):151–179, 2013.

[MKTS15a] Pradeep K Murukannaiah, Anup K Kalia, Pankaj R Telangy, and
Munindar P Singh. Resolving goal conflicts via argumentation-based
analysis of competing hypotheses. In Requirements Engineering Con-
ference (RE), 2015 IEEE 23rd International, pages 156–165. IEEE,
2015.

[MKTS15b] Pradeep K Murukannaiah, Anup K Kalia, Pankaj R Telangy, and
Munindar P Singh. Resolving goal conflicts via argumentation-based
analysis of competing hypotheses. In 23rd Int. Requirements Engineer-
ing Conf., pages 156–165. IEEE, 2015.

[MKvdM12] Jan Mentz, Paula Kotzé, and Alta van der Merwe. A comparison of
practitioner and researcher definitions of enterprise architecture using
an interpretation method. Advances in Enterprise Information Systems
II, pages 11–26, 2012.

[Mod09] Sanjay Modgil. Reasoning about preferences in argumentation frame-
works. Artificial Intelligence, 173(9):901–934, 2009.

[Mue10] Erik T Mueller. Commonsense reasoning. Morgan Kaufmann, 2010.

[MvdHvL99] J.-J.Ch. Meyer, W. van der Hoek, and B. van Linder. A logical approach
to the dynamics of commitments. Artificial Intelligence, 113(1-2):1–
40, September 1999.

[MvZG16] Diana Marosin, Marc van Zee, and Sepideh Ghanavati. Formalizing
and modeling enterprise architecture (ea) principles with goal-oriented

174 Bibliography

requirements language (grl). In Proceedings of the 28th International
Conference on Advanced Information System Engineering (CAiSE16),
June 2016.

[Nie07] Eetu Niemi. Enterprise architecture stakeholders–a holistic view. AM-
CIS 2007 Proceedings, 2007.

[NMD14] Lea Nedomová, Milos Maryska, and Petr Doucek. The enterprise ar-
chitect role–and its mission in corporate information and communica-
tion technology–a czech study. Journal of Applied Economic Sciences,
pages 88–100, 2014.

[Obj12] Object Management Group. Unified Profile for DoDAF and MODAF
(UPDM). Technical Report formal/2012-01-03, OMG, June 2012.

[OP07] M. Op ’t Land and Erik Proper. Impact of principles on enterprise engi-
neering. In Hubert sterle, Joachim Schelp, and Robert Winter, editors,
ECIS, pages 1965–1976. University of St. Gallen, 2007.

[OPW+08] M. Op ’t Land, H.A. Proper, M. Waage, J. Cloo, and C. Steghuis. En-
terprise Architecture – Creating Value by Informed Governance. En-
terprise Engineering Series. Springer, Berlin, Germany, 2008.

[Ost89] J.S. Ostroff. Temporal logic for real-time systems. Advanced software
development series. Research Studies Press, 1989.

[Pat10] Theodore Patkos. A formal theory for reasoning about action, knowl-
edge and time. PhD thesis, University of Crete-Heraklion, 2010.

[PdKP13a] Georgios Plataniotis, Sybren de Kinderen, and Henderik A Proper.
Capturing decision making strategies in enterprise architecture–a view-
point. In Enterprise, business-process and information systems model-
ing, pages 339–353. Springer Berlin Heidelberg, 2013.

[PdKP13b] Georgios Plataniotis, Sybren de Kinderen, and Henderik A Proper.
Capturing decision making strategies in enterprise architecture–a view-
point. In Enterprise, business-process and information systems model-
ing, pages 339–353. Springer Berlin Heidelberg, 2013.

[PdKP13c] Georgios Plataniotis, Sybren de Kinderen, and Henderik A Proper. Re-
lating decisions in enterprise architecture using decision design graphs.
In Enterprise Distributed Object Computing Conference (EDOC),
2013 17th IEEE International, pages 139–146. IEEE, 2013.

[PDKP14a] Georgios Plataniotis, Sybren De Kinderen, and Henderik A Proper. Ea
anamnesis: An approach for decision making analysis in enterprise
architecture. International Journal of Information System Modeling
and Design (IJISMD), 5(3):75–95, 2014.

[PDKP14b] Georgios Plataniotis, Sybren De Kinderen, and Henderik A Proper. Ea
anamnesis: An approach for decision making analysis in enterprise
architecture. International Journal of Information System Modeling
and Design (IJISMD), 5(3):75–95, 2014.

Bibliography 175

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1988.

[PH13] Marian Petre and Andre Van Der Hoek. Software Designers in Action:
A Human-Centric Look at Design Work. Chapman & Hall/CRC, 1st
edition, 2013.

[PO10] H.A. Proper and M. Op ’t Land. Lines in the Water – The Line of
Reasoning in an Enterprise Engineering Case Study from the Public
Sector. In Proceedings of the Practice-Driven Research on Enterprise
Transformation, pages 193–216, 2010.

[POtL10] H.A. Proper and M Op ’t Land. Lines in the Water: The Line of Rea-
soning in an Enterprise Engineering Case Study from the Public Sector.
In Proceedings of the 2nd Working Conference on Practice-driven Re-
search on Enterprise Transformation (PRET), Delft, The Netherlands,
volume 69 of Lecture Notes in Business Information Processing, pages
193–216. Springer, 2010.

[PP03] Nikos Papadakis and Dimitris Plexousakis. Actions with duration and
constraints: The ramification problem in temporal databases. Interna-
tional Journal on Artificial Intelligence Tools, 12(3):315–353, 2003.

[Raz78] Joseph Raz. Practical Reasoning. Oxford University Press, 1978.

[Rey02] M. Reynolds. An axiomatization of full computation tree logic. Jour-
nal of Symbolic Logic, 66(3):1011–1057, 2002.

[RG91] AS Rao and MP Georgeff. Modeling rational agents within a BDI-
architecture. KR, 1991.

[Riz16] Rizkiyanto. Better Design Rationale to Improve Software Design
Quality. Master’s thesis, Utrecht University, the Netherlands, 2016.

[RK96] Alexander Ran and Juha Kuusela. Design decision trees. In Proceed-
ings of the 8th International Workshop on Software Specification and
Design, IWSSD ’96, pages 172–, Washington, DC, USA, 1996. IEEE
Computer Society.

[RW91] S. Russell and E. Wefald. Do the right thing. Studies in limited ratio-
nality. MIT Press, 1991.

[RWR06] J.W. Ross, P. Weill, and D.C. Robertson. Enterprise architecture as
strategy: creating a foundation for business execution. Harvard Busi-
ness School Press, Boston, Massachusetts, 2006.

[Sav72] Leonard J Savage. The foundations of statistics. Courier Corporation,
1972.

[Sch16] Courtney Schriek. How a Simple Card Game Influences Design Rea-
soning: a Reflective Method. Master’s thesis, Utrecht University, the
Netherlands, 2016.

176 Bibliography

[Sea83] J.R. Searle. Intentionality. An Essay in the Philosophy of Mind. Cam-
bridge University Press, 1983.

[SH93] Steven H Spewak and Steven C Hill. Enterprise architecture planning:
developing a blueprint for data, applications and technology. QED
Information Sciences, Inc., 1993.

[SH15] Sofia Sherman and Irit Hadar. Toward defining the role of the software
architect: An examination of the soft aspects of this role. In 8th In-
ternational Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE 2015), 2015.

[Sho09] Y. Shoham. Logical theories of intention and the database perspective.
Journal of Philosophical Logic, 38:633–647, 2009.

[Sho16] Yoav Shoham. Why knowledge representation matters. Commun.
ACM, 59(1):47–49, January 2016.

[Sim98] Herbert A Simon. What we know about learning. Journal of Engineer-
ing Education, 87(4):343, 1998.

[Sin92a] Munindar P Singh. A critical examination of the cohen-levesque the-
ory of intentions. In Proceedings of the tenth european conference on
artificial intelligence (ECAI-92), pages 364–368, 1992.

[Sin92b] Munindar P. Singh. A critical examination of the cohen-levesque the-
ory of intentions. In Proceedings of the 10th European Conference
on Artificial Intelligence, ECAI ’92, pages 364–368, New York, NY,
USA, 1992. John Wiley & Sons, Inc.

[SLB08] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algo-
rithmic, game-theoretic, and logical foundations. Cambridge Univer-
sity Press, 2008.

[SP08] Claudia Steghuis and Erik Proper. Competencies and responsibilities
of enterprise architects. In JanL.G. Dietz, Antonia Albani, and Joseph
Barjis, editors, Advances in Enterprise Engineering I, volume 10,
pages 93–107. Springer, 2008.

[SR07] Carolyn Strano and Qamar Rehmani. The role of the enterprise archi-
tect. Information Systems and e-Business Management, 5(4):379–396,
2007.

[SSS+06] S. J. Buckingham Shum, A. M. Selvin, M. Sierhuis, J. Conklin, C. B.
Haley, and B. Nuseibeh. Hypermedia support for argumentation-based
rationale. In Rationale management in software engineering, pages
111–132. Springer, 2006.

[SSTC12] Steven Shapiro, Sebastian Sardina, John Thangarajah, and Lawrence
Cavedon. Revising conflicting intention sets in bdi agents. In Proceed-
ings of the 11th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2012), pages 1081–1088, Valencia,
Spain, June 2012.

Bibliography 177

[SUS14] Sofia Sherman and Naomi Unkelos-Shpigel. What do software archi-
tects think they (should) do? In Lazaros Iliadis, Michael Papazoglou,
and Klaus Pohl, editors, Advanced Information Systems Engineering
Workshops, volume 178, pages 219–225. Springer, 2014.

[SW02] M.C. Schut and M. Wooldridge. The control of reasoning in resource-
bounded agents. Knowledge Engineering Review, 16:215–240, 2002.
KER.

[SWP04] Martijn C. Schut, Michael Wooldridge, and Simon Parsons. The theory
and practice of intention reconsideration. J. Exp. Theor. Artif. Intell.,
16(4):261–293, 2004.

[TA05] Jeff Tyree and Art Akerman. Architecture decisions: demystifying
architecture. IEEE Software, 22:19–27, 2005.

[TGA13] Dan Tofan, Matthias Galster, and Paris Avgeriou. Difficulty of archi-
tectural decisions–a survey with professional architects. In Software
Arch., pages 192–199. Springer, 2013.

[THA94] Austin Tate, James Hendler, and James Allen. Readings in planning.
Morgan Kaufmann Publishers Inc., 1994.

[The00] The Architecture Working Group of the Software Engineering Com-
mittee. Recommended Practice for Architectural Description of Soft-
ware Intensive Systems. Technical Report IEEE P1471:2000, ISO/IEC
42010:2007, Standards Department, IEEE, Piscataway, New Jersey,
September 2000.

[The09a] The Open Group. The Open Group – TOGAF Version 9. Van Haren
Publishing, Zaltbommel, The Netherlands, 2009.

[The09b] The Open Group. TOGAF Version 9. Van Haren Publishing, Zaltbom-
mel, The Netherlands, 2009.

[Thi01] Michael Thielscher. The concurrent, continuous fluent calculus. Studia
Logica, 67(3):315–331, 2001.

[TJH07] Antony Tang, Yan Jin, and Jun Han. A rationale-based architecture
model for design traceability and reasoning. J. Syst. Softw., 80(6):918–
934, June 2007.

[TMA+12] Pancho Tolchinsky, Sanjay Modgil, Katie Atkinson, Peter McBur-
ney, and Ulises Cortés. Deliberation dialogues for reasoning about
safety critical actions. Autonomous Agents and Multi-Agent Systems,
25(2):209–259, 2012.

[TP94] Sek-Wah Tan and Judea Pearl. Qualitative decision theory. In Barbara
Hayes-Roth and Richard E. Korf, editors, Proceedings of the 12th Na-
tional Conference on Artificial Intelligence, Seattle, WA, USA, July 31
- August 4, 1994, Volume 2., pages 928–933. AAAI Press / The MIT
Press, 1994.

178 Bibliography

[TSSR11] Toomas Tamm, Peter B Seddon, Graeme Shanks, and Peter Reynolds.
How does enterprise architecture add value to organisations. Comm. of
the AIS, 28(1):141–168, 2011.

[UCI] UCI. Design Prompt: Traffic Signal Simulator. http:
//www.ics.uci.edu/design-workshop/files/UCI_Design_
Workshop_Prompt.pdf. Accessed: 2016-12-27.

[Van01] A. Van Lamsweerde. Goal-Oriented Requirements Engineering: A
Guided Tour. In Proc. RE’01: 5th Intl. Symp. Req. Eng., pages 249–
262, 2001.

[vdHJW07] Wiebe van der Hoek, Wojciech Jamroga, and Michael Wooldridge. To-
wards a theory of intention revision. Synthese, 155(2):265–290, 2007.

[VdHW03] Wiebe Van der Hoek and Michael Wooldridge. Towards a logic of
rational agency. Logic Journal of IGPL, 11(2):135–159, 2003.

[vdLvZ15] Dirk van der Linden and Marc van Zee. Insights from a Study on
Decision Making in Enterprise Architecture. In PoEM (Short Papers),
volume 1497 of CEUR Workshop Proceedings, pages 21–30, 2015.

[vGvD14] Bas van Gils and Sven van Dijk. The practice of enterprise archi-
tecture: experiences, techniques, and best practices. BiZZdesign
Academy, 2014.

[VHP04] G.E. Veldhuijzen van Zanten, S.J.B.A. Hoppenbrouwers, and H.A.
Proper. System Development as a Rational Communicative Process.
Journal of Systemics, Cybernetics and Informatics, 2(4):47–51, 2004.

[VL01] Axel Van Lamsweerde. Goal-oriented requirements engineering: A
guided tour. In Proc. 5th IEEE Int. Symposium on RE, pages 249–262,
2001.

[vL08] Axel van Lamsweerde. Requirements engineering: from craft to disci-
pline. In Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on Foundations of software engineering, pages 238–249. ACM,
2008.

[VNM07] John Von Neumann and Oskar Morgenstern. Theory of games and
economic behavior. Princeton university press, 2007.

[vZ15] Marc van Zee. Rational Architecture = Architecture from a Recom-
mender Perspective. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence, 2015.

[vZD16] Marc van Zee and Dragan Doder. Agm-style revision of beliefs and in-
tentions. In Proceedings of the 22nd European Conference on Artificial
Intelligence (ECAI’16), September 2016.

[vZDDvdT15a] Marc van Zee, Mehdi Dastani, Dragan Doder, and Leendert van der
Torre. Consistency Conditions for Beliefs and Intentions. In Twelfth
International Symposium on Logical Formalizations of Commonsense
Reasoning, 2015.

http://www.ics.uci.edu/design-workshop/files/UCI_Design_Workshop_Prompt.pdf
http://www.ics.uci.edu/design-workshop/files/UCI_Design_Workshop_Prompt.pdf
http://www.ics.uci.edu/design-workshop/files/UCI_Design_Workshop_Prompt.pdf

Bibliography 179

[vZDDvdT15b] Marc van Zee, Dragan Doder, Mehdi Dastani, and Leendert van der
Torre. AGM Revision of Beliefs about Action and Time. In Proceed-
ings of the International Joint Conference on Artificial Intelligence,
2015.

[vZDSvdT14] Marc van Zee, Mehdi Dastani, Yoav Shoham, and Leendert van der
Torre. Collective intention revision from a database perspective. In
Collective Intentionality Conference, July 2014.

[vZG14] Marc van Zee and Sepideh Ghanavati. Capturing Evidence and Ratio-
nales with Requirements Engineering and Argumentation-Based Tech-
niques. In Proc. of the 26th Benelux Conf. on Artificial Intelligence
(BNAIC2014), November 2014.

[vZI15] Marc van Zee and Thomas Icard. Intention reconsideration as metar-
easoning. In Bounded Optimality and Rational Metareasoning NIPS
2015 Workshop, December 2015.

[vZMBG16] Marc van Zee, Diana Marosin, Floris Bex, and Sepideh Ghanavati. The
rationalgrl toolset for goal models and argument diagrams. In Proceed-
ings of the 6th International Conference on Computational Models of
Argument (COMMA’16), Demo abstract, September 2016.

[vZMGB16] Marc van Zee, Diana Marosin, Sepideh Ghanavati, and Floris Bex. Ra-
tionalgrl: A framework for rationalizing goal models using argument
diagrams. In Proceedings of the 35th International Conference on Con-
ceptual Modeling (ER’2016), Short paper, November 2016.

[vZPvdLM14] Marc van Zee, Georgios Plataniotis, Dirk van der Linden, and Diana
Marosin. Formalizing enterprise architecture decision models using
integrity constraints. In CBI 2014, volume 1, pages 143–150. IEEE,
2014.

[Wal90] Douglas N Walton. Practical reasoning: goal-driven, knowledge-
based, action-guiding argumentation, volume 2. Rowman & Little-
field, 1990.

[Wij13] Commission Wijffels. Naar een dienstbaar en stabiel
bankwezen. http://www.rijksoverheid.nl/bestanden/documenten-
en-publicaties/kamerstukken/2013/06/28/rapport-naar-een-dienstbaar-
en-stabiel-bankwezen/rapport-naar-een-dienstbaar-en-stabiel-
bankwezen.pdf, 2013. Accessed: 2015-04-15.

[Woo00] M.J. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

[WP98] Michael Wooldridge and Simon Parsons. Intention reconsideration re-
considered. In Jörg P. Müller, Munindar P. Singh, and Anand S. Rao,
editors, ATAL, volume 1555 of Lecture Notes in Computer Science,
pages 63–79. Springer, 1998.

[WRM08] Douglas Walton, Christopher Reed, and Fabrizio Macagno. Argumen-
tation schemes. Cambridge University Press, 2008.

180 Bibliography

[WS10] C. Wilson and J. Short. Magic Quadrant for Enterprise Architecture
Tools. Technical Report ID Number: G00207406, Gartner, October
2010.

[Yu97a] Eric S. K. Yu. Towards modeling and reasoning support for early-phase
requirements engineering. In Proceedings of the 3rd IEEE Interna-
tional Symposium on Requirements Engineering, RE ’97, pages 226–,
Washington, DC, USA, 1997. IEEE Computer Society.

[Yu97b] Eric SK Yu. Towards modelling and reasoning support for early-phase
requirements engineering. In Proc. of the 3rd IEEE Int. Symposium on
RE, pages 226–235, 1997.

[Zac87] J.A. Zachman. A framework for information systems architecture. IBM
Systems Journal, 26(3), 1987.

[ZKL+09] Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny Polley, and
Nelly Schuster. Managing architectural decision models with depen-
dency relations, integrity constraints, and production rules. Journal of
Systems and Software, 82(8):1249–1267, 2009.

[ZR93] Shlomo Zilberstein and Stuart J. Russell. Anytime sensing planning
and action: A practical model for robot control. In Ruzena Bajcsy,
editor, Proceedings of the 13th International Joint Conference on Arti-
ficial Intelligence. Chambéry, France, August 28 - September 3, 1993,
pages 1402–1407. Morgan Kaufmann, 1993.

Publications

[ARGAIP2013] Diego Agustin Ambrossio, Alessio Antonini, Yehia Elrakaiby, Dov
Gabbay, and Marc van Zee. Argument revival in annotated argumenta-
tion networks. In Second workshop on Argumentation in Artificial In-
telligence and Philosophy: computational and philosophical perspec-
tives (ARGAIP-13), December 2013.

[AAAI2013] Natasha Alechina, Tristan Behrens, Mehdi Dastani, Koen Hindriks,
Koen Hubner, Fred Jomi, Brian Logan, Hai H. Nguyen, and Marc van
Zee. Multi-cycle query caching in agent programming. In Twenty-
Seventh AAAI Conference on Artificial Intelligence (AAAI-13), July
2013.

[EMAS2013] Mehdi Dastani and Marc van Zee. Belief caching in 2apl. In The
workshop on Engineering Multi-Agent Systems (EMAS), June 2013.

[CAISE2016] Diana Marosin, Marc van Zee, and Sepideh Ghanavati. Formalizing
and modeling enterprise architecture (ea) principles with goal-oriented
requirements language (grl). In Proceedings of the 28th International
Conference on Advanced Information System Engineering (CAiSE16),
June 2016.

[SOCINFO2014] Silvano Colombo Tosatto and Marc van Zee. Bridging social network
analysis and judgment aggregation. In Proceedings of the 6th Interna-
tional Conference on Social Informatics., December 2014.

[AAMAS2013] Silvano Colombo Tosatto and Marc van Zee. Social network analysis
for judgment aggregation. In 13th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS2014), 2014.

[CBI2014B] Dirk van der Linden and Marc van Zee. On the semantic feature struc-
ture of modeling concepts: an empirical study. In 16h IEEE Conference
on Business Informatics (CBI), May 2014.

[POEM2015] Dirk van der Linden and Marc van Zee. Insights from a study on deci-
sion making in enterprise architecture. In Proceedings of the 8th IFIP
WG 8.1 Working Conference on the Practice of Enterprise Modeling
(PoEM), September 2015.

[IJCAI2015B] Marc van Zee. Rational architecture = architecture from a recom-
mender perspective. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, July 2015.

181

182 Publications

[RE2015] Marc van Zee, Floris Bex, and Sepideh Ghanavati. Rationalization of
goal models in grl using formal argumentation. In Proceedings of the
Requirements Engineering Conference 2015 (RE’15), RE: Next! track,
August 2015.

[ECAI2016] Marc van Zee and Dragan Doder. Agm-style revision of beliefs and in-
tentions. In Proceedings of the 22nd European Conference on Artificial
Intelligence (ECAI’16), September 2016.

[NMR2016] Marc van Zee and Dragan Doder. Agm-style revision of beliefs and in-
tentions from a database perspective (preliminary version). In Proceed-
ings of the 16th International Workshop on Non-Monotonic Reasoning
(NMR’16), April 2016.

[IJCAI2015A] Marc van Zee, Mehdi Dastani, Dragan Doder, and Leendert van der
Torre. Agm revision of beliefs about action and time. In Proceedings
of the International Joint Conference on Artificial Intelligence, July
2015.

[COMMONSENSE2015] Marc van Zee, Mehdi Dastani, Dragan Doder, and Leendert
van der Torre. Consistency conditions for beliefs and intentions. In
Twelfth International Symposium on Logical Formalizations of Com-
monsense Reasoning, March 2015.

[DARE2014] Marc van Zee, Patrick Doherty, and John-Jules Meyer. Encoding def-
initional fragments of temporal action logic into logic programming.
In International Workshop on Defeasible and Ampliative Reasoning
(DARe), June 2014.

[CI2014] Marc van Zee, Mehdi Dastani, Yoav Shoham, and Leendert van der
Torre. Collective intention revision from a database perspective. In
Collective Intentionality Conference, July 2014.

[BNAIC2014] Marc van Zee and Sepideh Ghanavati. Capturing evidence and ra-
tionales with requirements engineering and argumentation-based tech-
niques. In Proceedings of the 26th Benelux Conference on Artificial
Intelligence (BNAIC2014), November 2014.

[BORM2015] Marc van Zee and Thomas Icard. Intention reconsideration as metar-
easoning. In Bounded Optimality and Rational Metareasoning NIPS
2015 Workshop, December 2015.

[COMMA2016] Marc van Zee, Diana Marosin, Floris Bex, and Sepideh Ghanavati.
The rationalgrl toolset for goal models and argument diagrams. In Pro-
ceedings of the 6th International Conference on Computational Models
of Argument (COMMA’16), Demo abstract, September 2016.

[ER2016] Marc van Zee, Diana Marosin, Sepideh Ghanavati, and Floris Bex. Ra-
tionalgrl: A framework for rationalizing goal models using argument
diagrams. In Proceedings of the 35th International Conference on Con-
ceptual Modeling (ER’2016), November 2016.

Publications 183

[CBI2014A] Marc van Zee, Georgios Plataniotis, Diana Marosin, and Dirk van der
Linden. Formalizing enterprise architecture decision models using in-
tegrity constraints. In 16h IEEE Conference on Business Informatics
(CBI), May 2014.

[BNAIC2015] Marc van Zee and Dirk van der Linden. Armed: Argumentation mining
and reasoning about enterprise architecture decisions. In Proceedings
of the 27th Benelux Conference on Artificial Intelligence (BNAIC2015),
November 2015.

[AAAI2014] Pouyan Ziafati, Yehia Elrakaiby, Marc van Zee, Leendert van der Torre,
Holger Voos, Mehdi Dastani, and John-Jules Meyer. Reasoning on
robot knowledge from discrete and asynchronous observations. In
Knowledge Representation and Reasoning in Robotics, March 2014.

Curriculum Vitae

2017 – . . . Google Research Zurich, Switzerland.
2013 – 2017 Ph.D. student in Computer Science, University of Luxembourg,

Luxembourg.
2011 – 2013 Master of Science in Technical Artificial Intelligence, Utrecht Uni-

versity, The Netherlands.
2005 – 2009 Bachelor of Science in Industrial Design, Eindhoven University of

Technology, The Netherlands.
1998 – 2004 Secondary education, Sint Willibrord College Goes, The Nether-

lands.

Born on October 28, 1985, Vlissingen, The Netherlands.

185

186 Curriculum Vitae

	Introduction
	Motivation
	Part 1: Characteristics of Enterprise Architecture
	Background
	Methodology
	Research questions

	Part 2: Goals
	Background
	Methodology
	Research questions

	Part 3: Planning and Scheduling
	Background
	Methodology
	Research question

	Thesis outline and publications

	I Characteristics of Enterprise Architecture
	Enterprise Architects High-Level Decision Making: an Empirical Study
	Introduction
	Methodology
	Participants
	Procedure
	Analysis method

	Results
	Analysis
	Main activities
	Modeling languages and techniques
	Qualitative/quantitative data
	Differences with other architecture fields
	Difficult aspects of design decisions

	Characteristics of enterprise architecting
	List of characteristics
	Rationality
	Bounded Rationality

	Discussion
	Related work
	Open issues
	Conclusion

	A Logical Framework for EA Anamnesis
	Introduction
	Illustrative case: ArchiSurance
	ArchiMate
	ArchiSurance

	EA Anamnesis
	Metamodel and decision design graphs
	Limitations of the metamodel

	A formal model for EA decision modeling
	Elementary definitions for EA decision modeling
	Layered decision model and logical relations

	Validation with ArchiSurance
	Discussion
	Related work
	Open issues
	Conclusion

	II Goals
	RationalGRL: A Framework for Argumentation and Goal Modeling
	Introduction
	Background: Goal-oriented Requirements Language and argument schemes
	Running example: Traffic Simulator
	Goal-oriented Requirements Language (GRL)
	Argument Scheme for Practical Reasoning (PRAS)

	Argument Schemes for Goal Modeling
	Details experiment
	Analysis

	Examples
	Example 1: Disable task Traffic light
	Example 2: Clarify task Road pattern
	Example 3: Decompose goal Simulate
	Example 4: Reinstate actor Development team

	RationalGRL: the logical framework
	Logical Language for RationalGRL
	Formal argumentation semantics
	Algorithms for argument schemes and critical questions
	Constructing GRL models

	Discussion
	Related work
	Open issues
	Conclusion

	III Planning and Scheduling
	A Logic for Beliefs about Actions and Time
	Introduction
	Commitment to time
	Methodology
	Strong and weak beliefs
	Results and overview

	PAL syntax
	PAL semantics
	PAL axiomatization
	Soundness and completeness
	Discussion
	Related work
	Open issues
	Conclusion

	The Dynamics of Beliefs and Intentions
	Introduction
	Adding intentions
	Separating strong and weak beliefs
	The coherence condition on beliefs and intentions

	Revision of beliefs and intentions
	AGM belief revision
	Revision postulates
	Representation theorem

	Iterated revision
	Discussion
	Related work
	Open issues
	Conclusion

	Conclusion
	UCI Design Workshop Prompt
	Transcripts Excerpts
	GRL Specification
	Proofs
	Completeness proofs
	Coherence Condition Proofs
	Representation theorems proofs

	Tileworld Experiments
	Bibliography
	Publications
	Curriculum Vitae

